2020 ◽  
Vol 75 (6) ◽  
pp. 507-509 ◽  
Author(s):  
Günter Nimtz ◽  
Horst Aichmann

AbstractPresently, nerve pulse propagation is understood to take place by electric action pulses. The theoretical description is given by the Hodgkin-Huxley model. Recently, an alternative model was proclaimed, where signaling is carried out by acoustic solitons. The solitons are built by a local phase transition in the lyotropic liquid crystal (LLC) of a biologic membrane. We argue that the crystal structure arranging hydrogen bonds at the membrane surface do not allow such an acoustic soliton model. The bound water is a component of the LLC and the assumed phase transition represents a negative entropy step.


2007 ◽  
Vol 02 (01) ◽  
pp. 57-78 ◽  
Author(s):  
THOMAS HEIMBURG ◽  
ANDREW D. JACKSON

The Hodgkin-Huxley model of nerve pulse propagation relies on ion currents through specific resistors called ion channels. We discuss a number of classical thermodynamic findings on nerves that are not contained within this classical theory. In particular striking is the finding of reversible heat changes, thickness and phase changes of the membrane during the action potential. Data on various nerves rather suggest that a reversible density pulse accompanies the action potential of nerves. Here, we attempted to explain these phenomena by propagating solitons that depend on the presence of cooperative phase transitions in the nerve membrane. The transitions, however, are strongly influenced by the presence of anesthetics. Therefore, the thermodynamic theory of nerve pulses suggests an explanation for the famous Meyer-Overton rule that states that the critical anesthetic dose is linearly related to the solubility of the drug in the membranes.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Fernando Ongay Larios ◽  
Nikolay P. Tretyakov ◽  
Maximo A. Agüero

The nonlinear problem of traveling nerve pulses showing the unexpected process of hysteresis and catastrophe is studied. The analysis was done for the case of one-dimensional nerve pulse propagation. Of particular interest is the distinctive tendency of the pulse nerve model to conserve its behavior in the absence of the stimulus that generated it. The hysteresis and catastrophe appear in certain parametric region determined by the evolution of bubble and pedestal like solitons. By reformulating the governing equations with a standard boundary conditions method, we derive a system of nonlinear algebraic equations for critical points. Our approach provides opportunities to explore the nonlinear features of wave patterns with hysteresis.


2008 ◽  
Author(s):  
T. Bountis ◽  
H. Christodoulidi ◽  
S. Anastassiou ◽  
Marko Robnik ◽  
Valery Romanovski

Sign in / Sign up

Export Citation Format

Share Document