Connection of “Green-Energy” Generation to Power Systems

2008 ◽  
pp. 205-215 ◽  
Proceedings ◽  
2020 ◽  
Vol 56 (1) ◽  
pp. 36
Author(s):  
Maria Assunta Signore ◽  
Giulio Malucelli ◽  
Donatella Duraccio ◽  
Chiara De Pascali ◽  
Ambra Fioravanti ◽  
...  

In this work, the fabrication of composites consisting of piezoelectric ZnO ceramic nanostructures and nanocellulose fillers in a UV-cured acrylic matrix has been exploited for the design of new functional coatings for green energy generation. The piezoelectric behavior was investigated at different accelerations applied to cantilever beams. The piezoelectric signal generated by the different ZnO nanostructures was improved by aluminum nitride film integration on the beam and proof mass insertion at the tip.


2018 ◽  
Vol 33 (4) ◽  
pp. 4308-4322 ◽  
Author(s):  
Roohallah Khatami ◽  
Masood Parvania ◽  
Pramod P. Khargonekar

2021 ◽  
pp. 117795
Author(s):  
Shahjalal Khandaker ◽  
Sudipto Das ◽  
Md. Tofazzal Hossain ◽  
Aminul Islam ◽  
Mohammad Raza Miah ◽  
...  

2019 ◽  
Vol 9 (7) ◽  
pp. 1484 ◽  
Author(s):  
Xiangwu Yan ◽  
Weichao Zhang

Due to the irreversible energy substitution from fossil fuels to clean energy, the development trend of future power systems is based on renewable energy generation. However, due to the incompatibility of converter-based non-dispatchable renewable energy generation, the stability and reliability of traditional power systems deteriorate as more renewables are introduced. Since conventional power systems are dominated by synchronous machines (SM), it is natural to utilize a virtual synchronous generator (VSG) control strategy that intimates SM characteristics on integrated converters. The VSG algorithm developed in this paper originates from mimicking mathematic models of synchronous machines. Among the different models of implementation, the second-order model is simple, stable, and compatible with the control schemes of current converters in traditional power systems. The VSG control strategy is thoroughly researched and case studied for various converter-interfaced systems that include renewable generation, energy storage, electric vehicles (EV), and other energy demands. VSG-based integration converters can provide grid services such as spinning reserves and inertia emulation to the upper grids of centralized plants, distributed generation networks, and microgrids. Thus, the VSG control strategy has paved a feasible way for an evolutionary transition to a power electronics-based future power grid. By referring to the knowledge of traditional grids, a hierarchical system of operations can be established. Finally, generation and loads can be united in universal compatibility architecture under consolidated synchronous mechanisms.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1914 ◽  
Author(s):  
Roland Ryndzionek ◽  
Łukasz Sienkiewicz

This paper presents an overview of the DC link development and evolution dedicated to HVDC structure for connecting offshore wind power plants to onshore power systems. The growing demand for the green energy has forced investors in power industry to look for resources further out at sea. Hence, the development of power electronics and industrial engineering has enabled offshore wind farms to be situated further from the shore and in deeper waters. However, their development will require, among other technologies, DC-DC conversion systems. The advantages of HVDC over HVAC technology in relation to transmission distance are given. The different HVDC configurations and topologies of HVDC converters are elucidated. In this context, the HVDC grids are a promising alternative for the expansion of the existing AC grid.


2019 ◽  
Vol 13 (3) ◽  
pp. 590-596
Author(s):  
Olivia Rossi ◽  
Arvind Chandrasekaran

Purpose The purpose of this paper is to answer this question by discussing the practicality of implementing microreactor technology towards large-scale renewable energy generation, as well as provide an incentive for future researchers to utilize microreactors as a useful alternative tool for green energy production. However, can microreactors present a viable solution for the generation of renewable energy to tackle the on-going global energy crisis? Design/methodology/approach In this paper, the practicality of implementing microreactor technology toward large-scale renewable energy generation is discussed. Specific areas of interest that elucidate considerable returns of microreactors toward renewable energy production are biofuel synthesis, hydrogen conversion and solar energy harvesting. Findings It is believed that sustained research on microreactors can significantly accelerate the development of new energy production methods through renewable sources, which will undoubtedly aid in the quest for a greener future. Originality/value This work aims to provide a sound judgement on the importance of research on renewable energy production and alternative energy management methods through microreactor technology, and why future studies on this topic should be highly encouraged. The relevance of this opinion paper lies in the idea that microreactors are an innovative concept currently used in engineering to significantly accelerate chemical reactions on microscale volumes; with the feasibility of high throughput to convert energy at larger scales with much greater efficiency than existing energy production methods.


Sign in / Sign up

Export Citation Format

Share Document