Using the Bacteriophage MS2 Coat Protein–RNA Binding Interaction to Visualize RNA in Living Cells

Author(s):  
Jeffrey A. Chao ◽  
Kevin Czaplinski ◽  
Robert H. Singer
2020 ◽  
Vol 49 (D1) ◽  
pp. D1396-D1404 ◽  
Author(s):  
Kunqi Chen ◽  
Bowen Song ◽  
Yujiao Tang ◽  
Zhen Wei ◽  
Qingru Xu ◽  
...  

Abstract Deciphering the biological impacts of millions of single nucleotide variants remains a major challenge. Recent studies suggest that RNA modifications play versatile roles in essential biological mechanisms, and are closely related to the progression of various diseases including multiple cancers. To comprehensively unveil the association between disease-associated variants and their epitranscriptome disturbance, we built RMDisease, a database of genetic variants that can affect RNA modifications. By integrating the prediction results of 18 different RNA modification prediction tools and also 303,426 experimentally-validated RNA modification sites, RMDisease identified a total of 202,307 human SNPs that may affect (add or remove) sites of eight types of RNA modifications (m6A, m5C, m1A, m5U, Ψ, m6Am, m7G and Nm). These include 4,289 disease-associated variants that may imply disease pathogenesis functioning at the epitranscriptome layer. These SNPs were further annotated with essential information such as post-transcriptional regulations (sites for miRNA binding, interaction with RNA-binding proteins and alternative splicing) revealing putative regulatory circuits. A convenient graphical user interface was constructed to support the query, exploration and download of the relevant information. RMDisease should make a useful resource for studying the epitranscriptome impact of genetic variants via multiple RNA modifications with emphasis on their potential disease relevance. RMDisease is freely accessible at: www.xjtlu.edu.cn/biologicalsciences/rmd.


2016 ◽  
Vol 113 (19) ◽  
pp. E2579-E2588 ◽  
Author(s):  
Katarzyna P. Adamala ◽  
Daniel A. Martin-Alarcon ◽  
Edward S. Boyden

The ability to monitor and perturb RNAs in living cells would benefit greatly from a modular protein architecture that targets unmodified RNA sequences in a programmable way. We report that the RNA-binding protein PumHD (Pumilio homology domain), which has been widely used in native and modified form for targeting RNA, can be engineered to yield a set of four canonical protein modules, each of which targets one RNA base. These modules (which we call Pumby, for Pumilio-based assembly) can be concatenated in chains of varying composition and length, to bind desired target RNAs. The specificity of such Pumby–RNA interactions was high, with undetectable binding of a Pumby chain to RNA sequences that bear three or more mismatches from the target sequence. We validate that the Pumby architecture can perform RNA-directed protein assembly and enhancement of translation of RNAs. We further demonstrate a new use of such RNA-binding proteins, measurement of RNA translation in living cells. Pumby may prove useful for many applications in the measurement, manipulation, and biotechnological utilization of unmodified RNAs in intact cells and systems.


2006 ◽  
Vol 1 (2) ◽  
pp. 920-927 ◽  
Author(s):  
Fanyi Zeng ◽  
Tiina Peritz ◽  
Theresa J Kannanayakal ◽  
Kalle Kilk ◽  
Emelía Eiríksdóttir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document