Module Design and Membrane Materials

2021 ◽  
pp. 99-142
Author(s):  
Nabilah Fazil ◽  
Sidra Saqib ◽  
Ahmad Mukhtar ◽  
Mohammad Younas ◽  
Mashallah Rezakazemi
2011 ◽  
Vol 26 (12) ◽  
pp. 1261-1265 ◽  
Author(s):  
Hui MA ◽  
Zhi-Yong LIU ◽  
Yu-Ming LU ◽  
Xiao-Yan JIN ◽  
Chuan-Bing CAI

2012 ◽  
Vol 220-223 ◽  
pp. 1472-1475
Author(s):  
Qiu Lin Tan ◽  
Xiang Dong Pei ◽  
Si Min Zhu ◽  
Ji Jun Xiong

On the basis of automatic test system of the status in domestic and foreign, by analysis of the various functions and performance of the integrated test system, a design of the integrated test system is proposed, FPGA as the core logic controller of the hardware circuit. The system of the hardware design include: digital signal source output modules, analog output module and PCM codec module. Design of hardware circuit are mainly described. In addition, a detailed analysis of some key technologies in the design process was given. Overall, its data exchange with host computer is through the PCI card, data link and bandwidth can be expanded in accordance with the actual needs. The entire system designed in the modular principle, which has a strong scalability.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hiroko Yuzawa ◽  
Yousuke Hirose ◽  
Tomonori Kimura ◽  
Keisuke Shinozaki ◽  
Moe Oguchi ◽  
...  

Abstract Background In continuous renal replacement therapy (CRRT), administration of anticoagulants is necessary for achieving a certain level of filter lifetime. Generally, anticoagulant doses are controlled to keep activated partial thromboplastin time and other indicators within a certain target range, regardless of the membrane materials used for the filter. However, in actual clinical practice, the filter lifetime varies significantly depending on the membrane material used. The objective of this study was to demonstrate that the minimum anticoagulant dose necessary for prolonging the filter lifetime while reducing the risk of hemorrhagic complications varies depending on the type of membrane. Methods In three beagles, hemodiafiltration was performed with hemofilters using polysulfone (PS), polymethylmethacrylate (PMMA), and AN69ST membranes separately. The minimum dose of nafamostat mesylate (NM) that would allow for 6 h of hemodiafiltration (required dose) was investigated for each membrane material. Results The NM doses required for 6 h of hemodiafiltration were 2 mg/kg/h for the PS membrane, 6 mg/kg/h for the PMMA membrane, and 6 mg/kg/h for the AN69ST membrane. Conclusion For hemodiafiltration performed in beagles, the required NM dose varied for each filter membrane material. Using the optimal anticoagulant dose for each membrane material would allow for safer CRRT performance.


Author(s):  
Susan Motil ◽  
John Snead ◽  
DeVon Griffin ◽  
Edward Hovenac

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Daisuke Sato ◽  
Taizo Masuda ◽  
Kenji Araki ◽  
Masafumi Yamaguchi ◽  
Kenichi Okumura ◽  
...  

AbstractStretchable photovoltaics are emerging power sources for collapsible electronics, biomedical devices, and buildings and vehicles with curved surfaces. Development of stretchable photovoltaics are crucial to achieve rapid growth of the future photovoltaic market. However, owing to their rigidity, existing thin-film solar cells based predominantly on silicon, compound semiconductors, and perovskites are difficult to apply to 3D curved surfaces, which are potential real-world candidates. Herein, we present a stretchable micro-scale concentrator photovoltaic module with a geometrical concentration ratio of 3.5×. When perfectly fitted on a 3D curved surface with a sharp curvature, the prototype module achieves an outdoor power conversion efficiency of 15.4% and the daily generated electricity yield improves to a maximum of 190% relative to a non-concentration stretchable photovoltaic module. Thus, this module design enables high areal coverage on 3D curved surfaces, while generating a higher electricity yield in a limited installation area.


Sign in / Sign up

Export Citation Format

Share Document