Direct Rolling of TiC p /Ti‐6Al‐4V Composite for Improved Microstructure, Mechanical Properties and High Temperature Oxidation Resistance

Author(s):  
Y. Jia ◽  
C.J. Zhang ◽  
S.Z. Zhang ◽  
H. Feng ◽  
F.Y. Han ◽  
...  
2016 ◽  
Vol 23 (05) ◽  
pp. 1650031
Author(s):  
JINGJIE DAI ◽  
HUIJUN YU ◽  
JIYUN ZHU ◽  
FEI WENG ◽  
CHUANZHONG CHEN

Ti–Al alloyed coating reinforced by nitrides was fabricated by laser surface alloying technique to improve mechanical properties and high temperature oxidation resistance of Ti–6Al–4V titanium alloy. Microstructures, mechanical properties and high temperature oxidation behavior of the alloyed coating were analyzed. The results show that the alloyed coating consisted of Ti3Al, TiAl2, TiN and Ti2AlN phases. Nitrides with different morphologies were dispersed in the alloyed coating. The maximum microhardness of the alloyed coating was 906[Formula: see text]HV. The friction coefficients of the alloyed coating at room temperature and high temperature were both one-fourth of the substrate. Mass gain of the alloyed coating oxidized at 800[Formula: see text]C for 1000[Formula: see text]h in static air was [Formula: see text][Formula: see text]mg/mm2, which was 1/35th of the substrate. No obvious spallation was observed for the alloyed coating after oxidation. The alloyed coating exhibited excellent mechanical properties and long-term high temperature oxidation resistance, which improved surface properties of Ti–6Al–4V titanium alloy significantly.


Sign in / Sign up

Export Citation Format

Share Document