scholarly journals All-Solid-State Batteries: Low Resistance-Integrated All-Solid-State Battery Achieved by Li7 La3 Zr2 O12 Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder (Adv. Funct. Mater. 1/2019)

2019 ◽  
Vol 29 (1) ◽  
pp. 1970006 ◽  
Author(s):  
Zipei Wan ◽  
Danni Lei ◽  
Wei Yang ◽  
Cheng Liu ◽  
Kai Shi ◽  
...  
Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


2020 ◽  
Vol 7 (20) ◽  
pp. 3953-3960
Author(s):  
Florian Strauss ◽  
Jun Hao Teo ◽  
Jürgen Janek ◽  
Torsten Brezesinski

A glassy 1.5Li2S–0.5P2S5–LiI solid electrolyte enables stable cycling of high-loading all-solid-state battery cells with an NCM622 cathode and a LTO anode.


2018 ◽  
Vol 11 (8) ◽  
pp. 2142-2158 ◽  
Author(s):  
Raimund Koerver ◽  
Wenbo Zhang ◽  
Lea de Biasi ◽  
Simon Schweidler ◽  
Aleksandr O. Kondrakov ◽  
...  

The volume effects of electrode materials can cause local stress development, contact loss and particle cracking in the rigid environment of a solid-state battery.


2021 ◽  
Author(s):  
Marvin Cronau ◽  
Marvin Szabo ◽  
Bernhard Roling

Single-step ball milling synthesis of a highly conductive glass ceramic solid electrolyte enables a low-impedance all-solid-state battery.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qiongyu Zhou ◽  
Songli Liu ◽  
Shiju Zhang ◽  
Yong Che ◽  
Li-Hua Gan

Compared with the fagile ceramic solid electrolyte, Li-ion conducting polymer electrolytes are flexible and have better contact with electrodes. However, the ionic conductivity of the polymer electrolytes is usually limited because of the slow segment motion of the polymer. In this work, we introduce porous Co3O4 cuboids to Poly (Ethylene Oxide)-based electrolyte (PEO) to investigate the influence of these cuboids on the ionic conductivity of the composite electrolyte and the performance of the all-solid-state batteries. The experiment results showed the porous cuboid Co3O4 fillers not only break the order motion of segments of the polymer to increase the amorphous phase amount, but also build Li+ continuous migration pathway along the Co3O4 surface by the Lewis acid-base interaction. The Li+ conductivity of the composite polymer electrolyte reaches 1.6 × 10−4 S cm−1 at 30°C. The good compatibility of the composite polymer electrolyte to Li metal anode and LiFePO4 cathode ensures good rate performance and long cycle life when applying in an all-solid-state LiFePO4 battery. This strategy points out the direction for developing the high-conducting composite polymer electrolytes for all-solid-state batteries.


Nanoscale ◽  
2020 ◽  
Vol 12 (26) ◽  
pp. 14279-14289 ◽  
Author(s):  
Lu Gao ◽  
Jianxin Li ◽  
Bushra Sarmad ◽  
Bowen Cheng ◽  
Weimin Kang ◽  
...  

A composite polymer electrolyte is synthesized, which has an improved ionic conductivity, superior interface compatibility and sufficient dendrite inhibition ability, bringing excellent electrochemical performance to all-solid-state batteries.


2020 ◽  
Vol 4 (5) ◽  
pp. 2229-2235 ◽  
Author(s):  
Deep A. Jokhakar ◽  
Dhanya Puthusseri ◽  
Palanisamy Manikandan ◽  
Zheng Li ◽  
Jooho Moon ◽  
...  

Enhancing the ionic conductivity and thermal stability of solid electrolytes is crucial for the development of all-solid-state batteries.


Sign in / Sign up

Export Citation Format

Share Document