Bistable Structures for Advanced Functional Systems

2021 ◽  
pp. 2106231
Author(s):  
Yunteng Cao ◽  
Masoud Derakhshani ◽  
Yuhui Fang ◽  
Guoliang Huang ◽  
Changyong Cao
Author(s):  
Noemi Bellassai ◽  
Roberta D’Agata ◽  
Giuseppe Spoto

AbstractNucleic acid nanotechnology designs and develops synthetic nucleic acid strands to fabricate nanosized functional systems. Structural properties and the conformational polymorphism of nucleic acid sequences are inherent characteristics that make nucleic acid nanostructures attractive systems in biosensing. This review critically discusses recent advances in biosensing derived from molecular beacon and DNA origami structures. Molecular beacons belong to a conventional class of nucleic acid structures used in biosensing, whereas DNA origami nanostructures are fabricated by fully exploiting possibilities offered by nucleic acid nanotechnology. We present nucleic acid scaffolds divided into conventional hairpin molecular beacons and DNA origami, and discuss some relevant examples by focusing on peculiar aspects exploited in biosensing applications. We also critically evaluate analytical uses of the synthetic nucleic acid structures in biosensing to point out similarities and differences between traditional hairpin nucleic acid sequences and DNA origami. Graphical abstract


2010 ◽  
Vol 56 (1) ◽  
pp. 89-102 ◽  
Author(s):  
Alfredo Burrieza ◽  
Inmaculada P. de Guzmán ◽  
Emilio Muñoz-Velasco

AIAA Journal ◽  
2016 ◽  
Vol 54 (9) ◽  
pp. 2905-2908 ◽  
Author(s):  
Masoud Zarepoor ◽  
Onur Bilgen
Keyword(s):  

ACS Nano ◽  
2010 ◽  
Vol 4 (8) ◽  
pp. 4753-4761 ◽  
Author(s):  
Yu Wang ◽  
Hui Juan Zhang ◽  
Li Lu ◽  
Ludger Paul Stubbs ◽  
Chee Cheong Wong ◽  
...  

2011 ◽  
Vol 279 (1732) ◽  
pp. 1287-1292 ◽  
Author(s):  
Roi Holzman ◽  
David C. Collar ◽  
Samantha A. Price ◽  
C. Darrin Hulsey ◽  
Robert C. Thomson ◽  
...  

Morphological diversification does not proceed evenly across the organism. Some body parts tend to evolve at higher rates than others, and these rate biases are often attributed to sexual and natural selection or to genetic constraints. We hypothesized that variation in the rates of morphological evolution among body parts could also be related to the performance consequences of the functional systems that make up the body. Specifically, we tested the widely held expectation that the rate of evolution for a trait is negatively correlated with the strength of biomechanical trade-offs to which it is exposed. We quantified the magnitude of trade-offs acting on the morphological components of three feeding-related functional systems in four radiations of teleost fishes. After accounting for differences in the rates of morphological evolution between radiations, we found that traits that contribute more to performance trade-offs tend to evolve more rapidly, contrary to the prediction. While ecological and genetic factors are known to have strong effects on rates of phenotypic evolution, this study highlights the role of the biomechanical architecture of functional systems in biasing the rates and direction of trait evolution.


Sign in / Sign up

Export Citation Format

Share Document