nucleic acid structures
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 64)

H-INDEX

31
(FIVE YEARS 9)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Qingqing Yan ◽  
Phillip Wulfridge ◽  
John Doherty ◽  
Jose L. Fernandez-Luna ◽  
Pedro J. Real ◽  
...  

AbstractR-loops are three-stranded nucleic acid structures that accumulate on chromatin in neurological diseases and cancers and contribute to genome instability. Using a proximity-dependent labeling system, we identified distinct classes of proteins that regulate R-loops in vivo through different mechanisms. We show that ATRX suppresses R-loops by interacting with RNAs and preventing R-loop formation. Our proteomics screen also discovered an unexpected enrichment for proteins containing zinc fingers and homeodomains. One of the most consistently enriched proteins was activity-dependent neuroprotective protein (ADNP), which is frequently mutated in ASD and causal in ADNP syndrome. We find that ADNP resolves R-loops in vitro and that it is necessary to suppress R-loops in vivo at its genomic targets. Furthermore, deletion of the ADNP homeodomain severely diminishes R-loop resolution activity in vitro, results in R-loop accumulation at ADNP targets, and compromises neuronal differentiation. Notably, patient-derived human induced pluripotent stem cells that contain an ADNP syndrome-causing mutation exhibit R-loop and CTCF accumulation at ADNP targets. Our findings point to a specific role for ADNP-mediated R-loop resolution in physiological and pathological neuronal function and, more broadly, to a role for zinc finger and homeodomain proteins in R-loop regulation, with important implications for developmental disorders and cancers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir. A. Ozcan ◽  
Layla T. Ghaffari ◽  
Aaron R. Haeusler

AbstractA nucleotide repeat expansion (NRE), (G4C2)n, located in a classically noncoding region of C9orf72 (C9), is the most common genetic mutation associated with ALS/FTD. There is increasing evidence that nucleic acid structures formed by the C9-NRE may both contribute to ALS/FTD, and serve as therapeutic targets, but there is limited characterization of these nucleic acid structures under physiologically and disease relevant conditions. Here we show in vitro that the C9-NRE DNA can form both parallel and antiparallel DNA G-quadruplex (GQ) topological structures and that the structural preference of these DNA GQs can be dependent on the molecular crowding conditions. Additionally, 5-methylcytosine DNA hypermethylation, which is observed in the C9-NRE locus in some patients, has minimal effects on GQ topological preferences. Finally, molecular dynamic simulations of methylated and nonmethylated GQ structures support in vitro data showing that DNA GQ structures formed by the C9-NRE DNA are stable, with structural fluctuations limited to the cytosine-containing loop regions. These findings provide new insight into the structural polymorphic preferences and stability of DNA GQs formed by the C9-NRE in both the methylated and nonmethylated states, as well as reveal important features to guide the development of upstream therapeutic approaches to potentially attenuate C9-NRE-linked diseases.


Author(s):  
Giovanni Luca Cascarano ◽  
Carmelo Giacovazzo

CAB, a recently described automated model-building (AMB) program, has been modified to work effectively with nucleic acids. To this end, several new algorithms have been introduced and the libraries have been updated. To reduce the input average phase error, ligand heavy atoms are now located before starting the CAB interpretation of the electron-density maps. Furthermore, alternative approaches are used depending on whether the ligands belong to the target or to the model chain used in the molecular-replacement step. Robust criteria are then applied to decide whether the AMB model is acceptable or whether it must be modified to fit prior information on the target structure. In the latter case, the model chains are rearranged to fit prior information on the target chains. Here, the performance of the new AMB program CAB applied to various nucleic acid structures is discussed. Other well documented programs such as Nautilus, ARP/wARP and phenix.autobuild were also applied and the experimental results are described.


2021 ◽  
Vol 22 (23) ◽  
pp. 12857
Author(s):  
Václav Brázda ◽  
Jan Havlík ◽  
Jan Kolomazník ◽  
Oldřich Trenz ◽  
Jiří Šťastný

R-loops are common non-B nucleic acid structures formed by a three-stranded nucleic acid composed of an RNA–DNA hybrid and a displaced single-stranded DNA (ssDNA) loop. Because the aberrant R-loop formation leads to increased mutagenesis, hyper-recombination, rearrangements, and transcription-replication collisions, it is regarded as important in human diseases. Therefore, its prevalence and distribution in genomes are studied intensively. However, in silico tools for R-loop prediction are limited, and therefore, we have developed the R-loop tracker tool, which was implemented as a part of the DNA Analyser web server. This new tool is focused upon (1) prediction of R-loops in genomic DNA without length and sequence limitations; (2) integration of R-loop tracker results with other tools for nucleic acids analyses, including Genome Browser; (3) internal cross-evaluation of in silico results with experimental data, where available; (4) easy export and correlation analyses with other genome features and markers; and (5) enhanced visualization outputs. Our new R-loop tracker tool is freely accessible on the web pages of DNA Analyser tools, and its implementation on the web-based server allows effective analyses not only for DNA segments but also for full chromosomes and genomes.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1173
Author(s):  
Judit Somkuti ◽  
Orsolya Réka Molnár ◽  
Anna Grád ◽  
László Smeller

G-quadruplexes are noncanonical structures formed by guanine-rich sequences of the genome. They are found in crucial loci of the human genome, they take part in the regulation of important processes like cell proliferation and cell death. Much less is known about the subjects of this work, the viral G-quadruplexes. We have chosen three potentially G-quadruplex-forming sequences of hepatitis B. We measured the stability and the thermodynamic parameters of these quadruplexes. We also investigated the potential stabilization of these G-quadruplexes by binding a special ligand that was originally developed for cancer therapy. Fluorescence and infrared spectroscopic measurements were performed over wide temperature and pressure ranges. Our experiments indicate the small unfolding volume change of all three oligos. We found a difference between the unfolding of the 2-quartet and the 3-quartet G-quadruplexes. All three G-quadruplexes were stabilized by TMPyP4, which is a cationic porphyrin developed for stabilizing the human telomere.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1579
Author(s):  
Yuanlei Cheng ◽  
Yashuo Zhang ◽  
Huijuan You

G-quadruplexes (G4s) are stable secondary nucleic acid structures that play crucial roles in many fundamental biological processes. The folding/unfolding dynamics of G4 structures are associated with the replication and transcription regulation functions of G4s. However, many DNA G4 sequences can adopt a variety of topologies and have complex folding/unfolding dynamics. Determining the dynamics of G4s and their regulation by proteins remains challenging due to the coexistence of multiple structures in a heterogeneous sample. Here, in this mini-review, we introduce the application of single-molecule force–spectroscopy methods, such as magnetic tweezers, optical tweezers, and atomic force microscopy, to characterize the polymorphism and folding/unfolding dynamics of G4s. We also briefly introduce recent studies using single-molecule force spectroscopy to study the molecular mechanisms of G4-interacting proteins.


2021 ◽  
Vol 22 (20) ◽  
pp. 10984
Author(s):  
Emanuela Ruggiero ◽  
Irene Zanin ◽  
Marianna Terreri ◽  
Sara N. Richter

G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of key cellular processes, such as transcription and replication. Since their discovery, G4s have been mainly investigated for their role in cancer and as targets in anticancer therapy. More recently, exploration of the presence and role of G4s in viral genomes has led to the discovery of G4-regulated key viral pathways. In this context, employment of selective G4 ligands has helped to understand the complexity of G4-mediated mechanisms in the viral life cycle, and highlighted the possibility to target viral G4s as an emerging antiviral approach. Research in this field is growing at a fast pace, providing increasing evidence of the antiviral activity of old and new G4 ligands. This review aims to provide a punctual update on the literature on G4 ligands exploited in virology. Different classes of G4 binders are described, with emphasis on possible antiviral applications in emerging diseases, such as the current COVID-19 pandemic. Strengths and weaknesses of G4 targeting in viruses are discussed.


BioTech ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 20
Author(s):  
Adriana Volná ◽  
Martin Bartas ◽  
Jakub Nezval ◽  
Vladimír Špunda ◽  
Petr Pečinka ◽  
...  

G-quadruplexes are four-stranded nucleic acid structures occurring in the genomes of all living organisms and viruses. It is increasingly evident that these structures play important molecular roles; generally, by modulating gene expression and overall genome integrity. For a long period, G-quadruplexes have been studied specifically in the context of human promoters, telomeres, and associated diseases (cancers, neurological disorders). Several of the proteins for binding G-quadruplexes are known, providing promising targets for influencing G-quadruplex-related processes in organisms. Nonetheless, in plants, only a small number of G-quadruplex binding proteins have been described to date. Thus, we aimed to bioinformatically inspect the available protein sequences to find the best protein candidates with the potential to bind G-quadruplexes. Two similar glycine and arginine-rich G-quadruplex-binding motifs were described in humans. The first is the so-called “RGG motif”-RRGDGRRRGGGGRGQGGRGRGGGFKG, and the second (which has been recently described) is known as the “NIQI motif”-RGRGRGRGGGSGGSGGRGRG. Using this general knowledge, we searched for plant proteins containing the above mentioned motifs, using two independent approaches (BLASTp and FIMO scanning), and revealed many proteins containing the G4-binding motif(s). Our research also revealed the core proteins involved in G4 folding and resolving in green plants, algae, and the key plant model organism, Arabidopsis thaliana. The discovered protein candidates were annotated using STRINGdb and sorted by their molecular and physiological roles in simple schemes. Our results point to the significant role of G4-binding proteins in the regulation of gene expression in plants.


2021 ◽  
Vol 77 (9) ◽  
pp. 1127-1141
Author(s):  
Ida de Vries ◽  
Tim Kwakman ◽  
Xiang-Jun Lu ◽  
Maarten L. Hekkelman ◽  
Mandar Deshpande ◽  
...  

The quality of macromolecular structure models crucially depends on refinement and validation targets, which optimally describe the expected chemistry. Commonly used software for these two procedures has been designed and developed in a protein-centric manner, resulting in relatively few established features for the refinement and validation of nucleic acid-containing structure models. Here, new nucleic acid-specific approaches implemented in PDB-REDO are described, including a new restraint model using noncovalent geometries (base-pair hydrogen bonding and base-pair stacking) as refinement targets. New validation routines are also presented, including a metric for Watson–Crick base-pair geometry normality (Z bpG). Applying the PDB-REDO pipeline with the new restraint model to the whole Protein Data Bank (PDB) demonstrates an overall positive effect on the quality of nucleic acid-containing structure models. Finally, we discuss examples of improvements in the geometry of specific nucleic acid structures in the PDB. The new PDB-REDO models and pipeline are available at https://pdb-redo.eu/.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4737
Author(s):  
Ángel Sánchez-González ◽  
Nuno A. G. Bandeira ◽  
Iker Ortiz de Luzuriaga ◽  
Frederico F. Martins ◽  
Sawssen Elleuchi ◽  
...  

This work provides new insights from our team regarding advances in targeting canonical and non-canonical nucleic acid structures. This modality of medical treatment is used as a form of molecular medicine specifically against the growth of cancer cells. Nevertheless, because of increasing concerns about bacterial antibiotic resistance, this medical strategy is also being explored in this field. Up to three strategies for the use of DNA as target have been studied in our research lines during the last few years: (1) the intercalation of phenanthroline derivatives with duplex DNA; (2) the interaction of metal complexes containing phenanthroline with G-quadruplexes; and (3) the activity of Mo polyoxometalates and other Mo-oxo species as artificial phosphoesterases to catalyze the hydrolysis of phosphoester bonds in DNA. We demonstrate some promising computational results concerning the favorable interaction of these small molecules with DNA that could correspond to cytotoxic effects against tumoral cells and microorganisms. Therefore, our results open the door for the pharmaceutical and medical applications of the compounds we propose.


Sign in / Sign up

Export Citation Format

Share Document