scholarly journals The Influence of Physicochemical Properties of Biomimetic Hydroxyapatite on the In Vitro Behavior of Endothelial Progenitor Cells and Their Interaction with Mesenchymal Stem Cells

2018 ◽  
Vol 8 (2) ◽  
pp. 1801138 ◽  
Author(s):  
Joanna Maria Sadowska ◽  
Jordi Guillem-Marti ◽  
Maria-Pau Ginebra
2013 ◽  
Vol 22 (4) ◽  
pp. 643-653 ◽  
Author(s):  
Alexandrina Burlacu ◽  
Gabriela Grigorescu ◽  
Ana-Maria Rosca ◽  
Mihai Bogdan Preda ◽  
Maya Simionescu

2017 ◽  
Vol 4 (3-4) ◽  
pp. 217-227
Author(s):  
Van Hong Tran ◽  
Hoa Trong Nguyen ◽  
Phuc Van Pham

Introduction: Endothelial cells (ECs) or endothelial progenitor cells (EPCs) are essential cells for blood vascular regeneration and vascular tissue engineering. However, the source of EPCs are limited. Indeed, these cells only existence with low rate at some tissues such as bone marrow, umbilical cord blood and peripheral blood. This study aimed to produce EPCs from direct reprogramming of adipose tissue-derived mesenchymal stem cells (ADSCs) by ETV2 transfection in vitro. Methods: ADSCs were isolated according to the published works. They were confirmed as mesenchymal stem cells (MSCs) with some characteristics included expression of CD44, CD73, CD90, negative of CD14, CD45, and HLA-DR; in vitro differentiation into adipocytes, and osteoblasts. ETV-2 mRNA was in vitro produced by commercial kit. ETV-2 mRNA molecules were transfected into ADSCs by Fugenes and Lipofectamine agents. These transfected cells were evaluated the expression of EPC properties included expression of CD31, VEGFR-2 in the cell surface by flow cytometry, immunocytochemistry, and in vitro vessel formation in the Matrigel. Results: The results showed that ETV-2 could transform the ADSCs from mesenchymal cell phenotype into endothelial cell phenotype with 10% transfected ADSCs expressing the CD31 in their surface, they also could form the vessel structure in vitro. Conclusion: Although the low efficacy of direct reprogramming, this study gave the new strategy to produce EPCs from the favorite cell sources as ADSCs.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yingyun Tan ◽  
Linjing Shu ◽  
Peng Xu ◽  
Shi Bai

Mesenchymal stem cells (MSCs) can attract host endothelial progenitor cells (EPCs) to promote vascularization in tissue-engineered constructs (TECs). Nevertheless, the underlying mechanism remains vague. This study is aimed at investigating the roles of CXCR2 and CXCR4 in the EPC migration towards MSCs. In vitro, Transwell assays were performed to evaluate the migration of EPCs towards MSCs. Antagonists and shRNAs targeting CXCR2, CXCR4, and JAK/STAT3 were applied for the signaling blockade. Western blot and RT-PCR were conducted to analyze the molecular events in EPCs. In vivo, TECs were constructed and subcutaneously implanted into GFP+ transgenic mice. Signaling inhibitors were injected in an orientated manner into TECs. Recruitment of host CD34+ cells was evaluated by immunofluorescence. Eventually, we demonstrated that CXCR2 and CXCR4 were both highly expressed in migrated EPCs and indispensable for MSC-induced EPC migration. CXCR2 and CXCR4 strongly correlated with each other in the way that the expression of CXCR2 and CXCR2-mediated migration depends on the activity of CXCR4 and vice versa. Further studies documented that both of CXCR2 and CXCR4 activated STAT3 signaling, which in turn regulated the expression of CXCR2 and CXCR4, as well as cell migration. In summary, we firstly introduced a reciprocal crosstalk between CXCR2 and CXCR4 in the context of EPC migration. This feedback loop plays critical roles in the migration of EPCs towards MSCs.


Sign in / Sign up

Export Citation Format

Share Document