Charge Manipulation Based Selective Functionalization of 3D Printed Structures for Functional Devices

2021 ◽  
pp. 2100694
Author(s):  
Yang Chen ◽  
Ting Xiao ◽  
Minghui Hu ◽  
Nan Wang ◽  
Likun Pan ◽  
...  
2016 ◽  
Vol 77 (S 02) ◽  
Author(s):  
Hassan Othman ◽  
Sam Evans ◽  
Daniel Morris ◽  
Saty Bhatia ◽  
Caroline Hayhurst

2019 ◽  
Author(s):  
Avital Perry ◽  
Soliman Oushy ◽  
Lucas Carlstrom ◽  
Christopher Graffeo ◽  
David Daniels ◽  
...  

2010 ◽  
Vol 38 (1) ◽  
pp. 80-98 ◽  
Author(s):  
M. Gerster ◽  
C. Fagouri ◽  
E. Peregi

Abstract One challenge facing green tire technology is to achieve good silica hydrophobation/dispersion within the polymer matrix without a detrimental increase in the rubber compound’s viscosity during compounding. This phenomenon is well known to be induced by premature and unwanted coupling and/or crosslinking of the traditional coupling agents. The current state-of-the-art polysulfides silanes, bis(3-triethoxysilylpropyl)tetrasulfide and to a lesser extent bis(3-triethoxysilylpropyl)disulfide (“Product Application—VP Si 75/VP X 75-S in the Rubber Industry,” Degussa Hüls Report No. PA 723.1E), need to be carefully incorporated with careful temperature control during the rubber compounding to prevent this “scorchy” behavior. This paper will present novel monofunctional silanes which are suited for preparing highly silica-loaded rubber compounds of superior processability, while applying fewer mixing passes, thereby reducing mixing times which can lead to improved productivity and cost savings. Additionally, these safer coupling agents can be processed at higher temperatures which can, again, lead to reduced mixing time and better ethanol removal thereby improving the tire’s physical properties and reducing the volatile organic compounds generated during the tire’s use. The rubber compounds produced using these monofunctional silanes are characterized by lower Mooney viscosity and improved processability. Advantageously, within these novel chemical classes of coupling agents, selective functionalization of the silanes allows production of tailor-made coupling agents which can respond to the specific requirements of the tire industry (Vilgis, T. A. and Heinrich, G., “Die Physic des Autoreifens,” Physikalische Blätter, Vol. 57, 2001, pp. 1–7).


2020 ◽  
Vol XV (1) ◽  
Author(s):  
E. Presnyakov ◽  
I. Bozo ◽  
I. Smirnov ◽  
V. Komlev ◽  
V. Popov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document