scholarly journals Large-Scale Energy Storage: A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage (Adv. Energy Mater. 3/2011)

2011 ◽  
Vol 1 (3) ◽  
pp. 306-306 ◽  
Author(s):  
Liyu Li ◽  
Soowhan Kim ◽  
Wei Wang ◽  
M. Vijayakumar ◽  
Zimin Nie ◽  
...  
2011 ◽  
Vol 1 (3) ◽  
pp. 394-400 ◽  
Author(s):  
Liyu Li ◽  
Soowhan Kim ◽  
Wei Wang ◽  
M. Vijayakumar ◽  
Zimin Nie ◽  
...  

2015 ◽  
Vol 163 (1) ◽  
pp. A5023-A5028 ◽  
Author(s):  
Sarah Roe ◽  
Chris Menictas ◽  
Maria Skyllas-Kazacos

2020 ◽  
Author(s):  
Jian Luo ◽  
Bo Hu ◽  
Wenda Wu ◽  
Maowei Hu ◽  
Leo Liu

Redox flow batteries (RFBs) have been recognized as a promising option for scalable and dispatchable renewable energy storage (e.g. solar and wind energy). Zinc metal represents a low cost, high capacity anode material to develop high energy density aqueous redox flow batteries. However, the energy storage applications of traditional inorganic Zn halide flow batteries are primarily plagued by the material challenges of traditional halide cathode electrolytes (e.g. bromine) including corrosion, toxicity, and severe crossover. As reported here, we have developed a bipolar Zinc-ferrocene salt compound, Zinc 1,1’-bis(3-sulfonatopropyl)ferrocene, Zn[Fc(SPr)2] (1.80 M solubility or 48.2 Ah/L charge storage capacity) – a robust, energy-dense, bipolar redox-active electrolyte material for high performance Zn organic RFBs. Using a low-cost porous Daramic membrane, the Zn[Fc(SPr)2] aqueous organic redox flow battery (AORFB) has worked in dual-flow and single-flow modes. It has manifested outstanding current, energy, and power performance, specifically, operating at high current densities of up to 200 mA/cm2 and delivering an energy efficiency of up to 81.5% and a power density of up to 270.5 mW/cm2. A Zn[Fc(SPr)2] AORFB demonstrated an energy density of 20.2 Wh/L and displayed 100% capacity retention for 2000 cycles (1284 hr or 53.5 days). The Zn[Fc(SPr)2] ionic bipolar electrolyte not only offers record-setting, highly-stable, energy-dense, and the most powerful Zn-organic AORFBs to date, but it also provides a new paradigm to develop even more advanced redox materials for scalable energy storage.


Author(s):  
H. M. Sathisha ◽  
Amaresh Dalal

The all-vanadium redox flow battery (VRFB) has been considered as one of the most promising rechargeable battery for large-scale energy storage system that can be used with renewable energy sources, such as wind and solar energy, for electrical energy storage and distribution. Since it is able to withstand average loads, high energy efficiency (EE), and high power output, the battery exhibits good transient behavior and sustains sudden voltage drop. The dynamics of the battery is governed by the equations of fluid mechanics, electrodynamics, and electrochemistry. In this context, earlier efforts reported in the literature were mainly focused on simulation of the variation of the charge/discharge characteristics of the cell. There is a need to optimize the cell parameters so as to improve the cell performance. The performance of the battery is also studied numerically with the two-dimensional (2D) isothermal transient model. This model is used to predict the effects of change in electrolyte flow rate, concentration, electrode porosity, and applied current. The efficiency analysis for the effects of concentration shows that maximum coulombic, voltage, and energy efficiencies have been achieved in case of higher concentration. Numerical model results are validated with the available experimental result, which shows good agreement.


Author(s):  
Anteneh Wodaje Bayeh ◽  
Daniel Manaye Kabtamu ◽  
Yo Chong Chang ◽  
Tadele Hunde Wondimu ◽  
H. C. Huang ◽  
...  

As one of the most promising electrochemical energy storage systems, the vanadium redox flow battery (VRFB) has received increasing attention owing to its attractive features for large-scale storage applications. However,...


2015 ◽  
Vol 1 (10) ◽  
pp. e1500886 ◽  
Author(s):  
Chuankun Jia ◽  
Feng Pan ◽  
Yun Guang Zhu ◽  
Qizhao Huang ◽  
Li Lu ◽  
...  

Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.


Sign in / Sign up

Export Citation Format

Share Document