scholarly journals High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane

2015 ◽  
Vol 1 (10) ◽  
pp. e1500886 ◽  
Author(s):  
Chuankun Jia ◽  
Feng Pan ◽  
Yun Guang Zhu ◽  
Qizhao Huang ◽  
Li Lu ◽  
...  

Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.

2011 ◽  
Vol 1 (3) ◽  
pp. 394-400 ◽  
Author(s):  
Liyu Li ◽  
Soowhan Kim ◽  
Wei Wang ◽  
M. Vijayakumar ◽  
Zimin Nie ◽  
...  

2016 ◽  
Vol 9 (3) ◽  
pp. 917-921 ◽  
Author(s):  
Qizhao Huang ◽  
Jing Yang ◽  
Chee Boon Ng ◽  
Chuankun Jia ◽  
Qing Wang

Charge/discharge LiFeO4with a single redox species: a Li-I redox flow lithium battery with strikingly high energy density for large-scale energy storage applications.


Author(s):  
Zhiqiang Luo ◽  
Silin Zheng ◽  
Shuo Zhao ◽  
Xin Jiao ◽  
Zongshuai Gong ◽  
...  

Benzoquinone with high theoretical capacity is anchored on N-plasma engraved porous carbon as a desirable cathode for rechargeable aqueous Zn-ion batteries. Such batteries display tremendous potential in large-scale energy storage applications.


2020 ◽  
Author(s):  
Jian Luo ◽  
Bo Hu ◽  
Wenda Wu ◽  
Maowei Hu ◽  
Leo Liu

Redox flow batteries (RFBs) have been recognized as a promising option for scalable and dispatchable renewable energy storage (e.g. solar and wind energy). Zinc metal represents a low cost, high capacity anode material to develop high energy density aqueous redox flow batteries. However, the energy storage applications of traditional inorganic Zn halide flow batteries are primarily plagued by the material challenges of traditional halide cathode electrolytes (e.g. bromine) including corrosion, toxicity, and severe crossover. As reported here, we have developed a bipolar Zinc-ferrocene salt compound, Zinc 1,1’-bis(3-sulfonatopropyl)ferrocene, Zn[Fc(SPr)2] (1.80 M solubility or 48.2 Ah/L charge storage capacity) – a robust, energy-dense, bipolar redox-active electrolyte material for high performance Zn organic RFBs. Using a low-cost porous Daramic membrane, the Zn[Fc(SPr)2] aqueous organic redox flow battery (AORFB) has worked in dual-flow and single-flow modes. It has manifested outstanding current, energy, and power performance, specifically, operating at high current densities of up to 200 mA/cm2 and delivering an energy efficiency of up to 81.5% and a power density of up to 270.5 mW/cm2. A Zn[Fc(SPr)2] AORFB demonstrated an energy density of 20.2 Wh/L and displayed 100% capacity retention for 2000 cycles (1284 hr or 53.5 days). The Zn[Fc(SPr)2] ionic bipolar electrolyte not only offers record-setting, highly-stable, energy-dense, and the most powerful Zn-organic AORFBs to date, but it also provides a new paradigm to develop even more advanced redox materials for scalable energy storage.


2017 ◽  
Vol 10 (3) ◽  
pp. 735-741 ◽  
Author(s):  
Guo-Ming Weng ◽  
Zhejun Li ◽  
Guangtao Cong ◽  
Yucun Zhou ◽  
Yi-Chun Lu

A new concept of exploiting bromide ions as a complexing agent to ‘free-up’ iodide ions for energy storage.


Author(s):  
Lin Qiao ◽  
Congxin Xie ◽  
Mingjun Nan ◽  
Huamin Zhang ◽  
Xiangkun Ma ◽  
...  

Manganese-based flow batteries have attracted increasing interest due to their advantage of low cost and high energy density. However, the sediment (MnO2) from Mn3+ disproportionation reaction creates the risk to...


2021 ◽  
Author(s):  
Xiao Tang ◽  
Dong Zhou ◽  
Bao Zhang ◽  
Shijian Wang ◽  
Peng Li ◽  
...  

Abstract Non–aqueous rechargeable multivalent metal (Ca, Mg, Al, etc.) batteries are promising for large–scale energy storage due to their low cost. However, their practical applications face formidable challenges owing to low electrochemical reversibility and dendrite growth of multivalent metal anodes, sluggish kinetics of multivalent ion in metal oxide cathodes, and poor electrode compatibility of flammable organic electrolytes. To overcome these intrinsic hurdles, we develop aqueous multivalent ion batteries to replace the prevailing non–aqueous multivalent metal batteries by using wide–window super–concentrated aqueous gel electrolytes, the versatile high–capacity sulfur anodes, and high–voltage metal oxide cathodes. This rationally designed aqueous battery chemistry enables the long–lasting multivalent ion batteries featured with increased high energy density, reversibility and safety. As a demonstration model, a calcium ion−sulfur||metal oxide full cell exhibited a high energy density of 110 Wh kg–1 with outstanding cycling stability. Molecular dynamics modelling and experimental investigations revealed that the side reactions could be significantly restrained through the suppressed water activity and formation of protective inorganic solid electrolyte interphase in the aqueous gel electrolyte. The unique redox chemistry has also been successfully extended to aqueous magnesium ion and aluminum ion−sulfur||metal oxide batteries. This work will boost aqueous multivalent ion batteries for low−cost large–scale energy storage.


Author(s):  
Guangchi Sun ◽  
Baozhu Yang ◽  
Gui Yin ◽  
Hanping Zhang ◽  
Qi Liu

Aqueous zinc batteries are considered as one of the most promising energy storage systems for large-scale energy storage and wearable electronics, owing to their low cost and intrinsic safety. However, cathode materials that can reversibly host Zn<sup>2+</sup> are still less. Here, we demonstrate that two N-containing organic compounds, hexamethoxy hexaazatrinaphthylene (HMHATN) and hexaazatrinaphthylene (HATN), used as cathodes can exhibit excellent reversible Zn<sup>2+</sup> storage capability with fast kinetics and the high capacity of 542 and 963 mA h g<sup>-1</sup>, respectively. The Zn//HMHATN and Zn//HATN full batteries display the high energy density of 160 and 221.6 W h kg<sup>-1</sup>, respectively, and long-term cycling stability. Further, we investigate the mechanism of Zn<sup>2+</sup> storage in the cathodes. More importantly, the flexible aqueous Zn//HMHATN and Zn//HATN batteries fabricated also have high capacity, long-term cycling life and impressive energy density, displaying its application prospect in wearable electronics. Our work opens a new system for finding organic cathode materials used in aqueous zinc batteries.


2018 ◽  
Vol 54 (31) ◽  
pp. 3800-3810 ◽  
Author(s):  
Y. Zhang ◽  
C. Pozo-Gonzalo

Increasing energy demands call for new energy storage technologies with high energy density to meet current and future needs.


Sign in / Sign up

Export Citation Format

Share Document