scholarly journals Solar Cells: Dual Interfacial Modifications Enable High Performance Semitransparent Perovskite Solar Cells with Large Open Circuit Voltage and Fill Factor (Adv. Energy Mater. 9/2017)

2017 ◽  
Vol 7 (9) ◽  
Author(s):  
Qifan Xue ◽  
Yang Bai ◽  
Meiyue Liu ◽  
Ruoxi Xia ◽  
Zhicheng Hu ◽  
...  
Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rui He ◽  
Tingting Chen ◽  
Zhipeng Xuan ◽  
Tianzhen Guo ◽  
Jincheng Luo ◽  
...  

Abstract Wide-bandgap (wide-E g , ∼1.7 eV or higher) perovskite solar cells (PSCs) have attracted extensive attention due to the great potential of fabricating high-performance perovskite-based tandem solar cells via combining with low-bandgap absorbers, which is considered promising to exceed the Shockley–Queisser efficiency limit. However, inverted wide-E g PSCs with a minimized open-circuit voltage (V oc) loss, which are more suitable to prepare all-perovskite tandem devices, are still lacking study. Here, we report a strategy of adding 1,3,5-tris (bromomethyl) benzene (TBB) into wide-E g perovskite absorber to passivate the perovskite film, leading to an enhanced average V oc. Incorporation of TBB prolongs carrier lifetimes in wide-E g perovskite due to reduction of defects in perovskites and makes a better energy level matching between perovskite absorber and electron transport layer. As a result, we achieve the power conversion efficiency of 17.12% for our inverted TBB-doped PSC with an enhanced V oc of 1.19 V, compared with that (16.14%) for the control one (1.14 V).


2019 ◽  
Vol 9 (21) ◽  
pp. 1970079 ◽  
Author(s):  
Saba Gharibzadeh ◽  
Bahram Abdollahi Nejand ◽  
Marius Jakoby ◽  
Tobias Abzieher ◽  
Dirk Hauschild ◽  
...  

2016 ◽  
Vol 52 (71) ◽  
pp. 10708-10711 ◽  
Author(s):  
Qinxian Lin ◽  
Yantao Su ◽  
Ming-Jian Zhang ◽  
Xiaoyang Yang ◽  
Sheng Yuan ◽  
...  

Increasing the open-circuit voltage (Voc) along with the fill factor (FF) is pivotal for the performance improvement of solar cells.


2014 ◽  
Vol 7 (8) ◽  
pp. 2614-2618 ◽  
Author(s):  
Seungchan Ryu ◽  
Jun Hong Noh ◽  
Nam Joong Jeon ◽  
Young Chan Kim ◽  
Woon Seok Yang ◽  
...  

The voltage output of perovskite solar cells is found to be dependent on both the energy level of perovskite itself as a solar absorber and hole transporting materials.


2016 ◽  
Vol 18 (1) ◽  
pp. 331-338 ◽  
Author(s):  
Tejas S. Sherkar ◽  
L. Jan Anton Koster

Ferroelectricity can lead to creation of channels for efficient transport, however it is unlikely to explain the high open-circuit voltage (VOC), typical of high performance perovskite solar cells.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 654
Author(s):  
Wei-Wei Zuo ◽  
Weifei Fu ◽  
Wan-Sheng Zong ◽  
Shen-Gang Xu ◽  
Ying-Liang Liu ◽  
...  

The purity of the perovskite material is of paramount importance as it determines the optoelectronic properties and, hence, the device performance. However, the error during the experiment and incomplete crystallization is inevitable, leading to a low quality. Here, two p-type polymers were designed to template the crystallization of perovskite to obtain perovskite films with higher crystallinity and higher phase purity. The polymers at the perovskite/transport interface could also improve the charge transfer and, thus, the device performance. In this study, the highest efficiency device achieved an efficiency value of ~19% with improved open-circuit voltage and fill factor.


2018 ◽  
Vol 6 (41) ◽  
pp. 20138-20144 ◽  
Author(s):  
Jaeki Jeong ◽  
Hak-Beom Kim ◽  
Yung Jin Yoon ◽  
Na Gyeong An ◽  
Seyeong Song ◽  
...  

A compact seed perovskite layer (CSPL) with a p–i–n planar heterojunction structure for perovskite solar cells achieved a 19.24% power conversion efficiency with a record open circuit voltage of 1.16 V and 20.37% PCE was achieved with a CSPL assisted n–i–p structure in a pure crystal perovskite film. The CSPL assists vertical growth of the perovskite crystal to enhance device performance.


Sign in / Sign up

Export Citation Format

Share Document