Recent Advances on Water‐Splitting Electrocatalysis Mediated by Noble‐Metal‐Based Nanostructured Materials

2020 ◽  
Vol 10 (11) ◽  
pp. 1903120 ◽  
Author(s):  
Yingjie Li ◽  
Yingjun Sun ◽  
Yingnan Qin ◽  
Weiyu Zhang ◽  
Lei Wang ◽  
...  
Author(s):  
Yaru Li ◽  
Yu-Quan Zhu ◽  
Weili Xin ◽  
Song Hong ◽  
Xiaoying Zhao ◽  
...  

Rationally designing low-content and high-efficiency noble metal nanodots offers opportunities to enhance electrocatalytic performances for water splitting. However, the preparation of highly dispersed nanodots electrocatalysts remains a challenge. Herein, we...


Author(s):  
Junjie Zhu ◽  
Jónína B. Guđmundsdóttir ◽  
Ragnar Strandbakke ◽  
Kevin G. Both ◽  
Thomas Aarholt ◽  
...  

Author(s):  
Lunlun Gong ◽  
Peili Zhang ◽  
Guoquan Liu ◽  
Yu Shan ◽  
Mei Wang

Modification of the surface of semiconductor-based photoelectrodes with molecular redox catalysts gives a way to realize atom-efficient catalysis for photoelectrochemical (PEC) H2 and O2 evolution. However, the diversity of immobilized...


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shan Wang ◽  
Aolin Lu ◽  
Chuan-Jian Zhong

AbstractAs a promising substitute for fossil fuels, hydrogen has emerged as a clean and renewable energy. A key challenge is the efficient production of hydrogen to meet the commercial-scale demand of hydrogen. Water splitting electrolysis is a promising pathway to achieve the efficient hydrogen production in terms of energy conversion and storage in which catalysis or electrocatalysis plays a critical role. The development of active, stable, and low-cost catalysts or electrocatalysts is an essential prerequisite for achieving the desired electrocatalytic hydrogen production from water splitting for practical use, which constitutes the central focus of this review. It will start with an introduction of the water splitting performance evaluation of various electrocatalysts in terms of activity, stability, and efficiency. This will be followed by outlining current knowledge on the two half-cell reactions, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), in terms of reaction mechanisms in alkaline and acidic media. Recent advances in the design and preparation of nanostructured noble-metal and non-noble metal-based electrocatalysts will be discussed. New strategies and insights in exploring the synergistic structure, morphology, composition, and active sites of the nanostructured electrocatalysts for increasing the electrocatalytic activity and stability in HER and OER will be highlighted. Finally, future challenges and perspectives in the design of active and robust electrocatalysts for HER and OER towards efficient production of hydrogen from water splitting electrolysis will also be outlined.


Author(s):  
Soumyabrata Roy ◽  
Debabrata Bagchi ◽  
Lakshay Dheer ◽  
Saurav Ch. Sarma ◽  
Vincent Rajaji ◽  
...  

2017 ◽  
Vol 1 (11) ◽  
pp. 2155-2173 ◽  
Author(s):  
Kaihua Liu ◽  
Haixia Zhong ◽  
Fanlu Meng ◽  
Xinbo Zhang ◽  
Junmin Yan ◽  
...  

The recent developments of metal–nitrogen–carbon catalysts for electrochemical water splitting have been comprehensively summarized.


Sign in / Sign up

Export Citation Format

Share Document