Nano Convergence
Latest Publications


TOTAL DOCUMENTS

287
(FIVE YEARS 122)

H-INDEX

25
(FIVE YEARS 12)

Published By Springer (Biomed Central Ltd.)

2196-5404, 2196-5404

2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Nam Hyeong Kim ◽  
Hojae Choi ◽  
Zafar Muhammad Shahzad ◽  
Heesoo Ki ◽  
Jaekyoung Lee ◽  
...  

AbstractSeveral phenomena occurring throughout the life of living things start and end with proteins. Various proteins form one complex structure to control detailed reactions. In contrast, one protein forms various structures and implements other biological phenomena depending on the situation. The basic principle that forms these hierarchical structures is protein self-assembly. A single building block is sufficient to create homogeneous structures with complex shapes, such as rings, filaments, or containers. These assemblies are widely used in biology as they enable multivalent binding, ultra-sensitive regulation, and compartmentalization. Moreover, with advances in the computational design of protein folding and protein–protein interfaces, considerable progress has recently been made in the de novo design of protein assemblies. Our review presents a description of the components of supramolecular protein assembly and their application in understanding biological phenomena to therapeutics.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyunhyuk Tae ◽  
Soohyun Park ◽  
Gamaliel Junren Ma ◽  
Nam-Joon Cho

AbstractCell-membrane-mimicking supported lipid bilayers (SLBs) provide an ultrathin, self-assembled layer that forms on solid supports and can exhibit antifouling, signaling, and transport properties among various possible functions. While recent material innovations have increased the number of practically useful SLB fabrication methods, typical SLB platforms only work in aqueous environments and are prone to fluidity loss and lipid-bilayer collapse upon air exposure, which limits industrial applicability. To address this issue, herein, we developed sucrose–bicelle complex system to fabricate air-stable SLBs that were laterally mobile upon rehydration. SLBs were fabricated from bicelles in the presence of up to 40 wt% sucrose, which was verified by quartz crystal microbalance-dissipation (QCM-D) and fluorescence recovery after photobleaching (FRAP) experiments. The sucrose fraction in the system was an important factor; while 40 wt% sucrose induced lipid aggregation and defects on SLBs after the dehydration–rehydration process, 20 wt% sucrose yielded SLBs that exhibited fully recovered lateral mobility after these processes. Taken together, these findings demonstrate that sucrose–bicelle complex system can facilitate one-step fabrication of air-stable SLBs that can be useful for a wide range of biointerfacial science applications.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Yao Miao ◽  
Tao Yang ◽  
Shuxu Yang ◽  
Mingying Yang ◽  
Chuanbin Mao

AbstractCancer has been a serious threat to human health. Among drug delivery carriers, protein nanoparticles are unique because of their mild and environmentally friendly preparation methods. They also inherit desired characteristics from natural proteins, such as biocompatibility and biodegradability. Therefore, they have solved some problems inherent to inorganic nanocarriers such as poor biocompatibility. Also, the surface groups and cavity of protein nanoparticles allow for easy surface modification and drug loading. Besides, protein nanoparticles can be combined with inorganic nanoparticles or contrast agents to form multifunctional theranostic platforms. This review introduces representative protein nanoparticles applicable in cancer theranostics, including virus-like particles, albumin nanoparticles, silk protein nanoparticles, and ferritin nanoparticles. It also describes the common methods for preparing them. It then critically analyzes the use of a variety of protein nanoparticles in improved cancer imaging and therapy.


2022 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyungseok Kang ◽  
Joo Sung Kim ◽  
Seok-Ryul Choi ◽  
Young-Hoon Kim ◽  
Do Hwan Kim ◽  
...  

AbstractIn this study, we performed metal (Ag, Ni, Cu, or Pd) electroplating of core–shell metallic Ag nanowire (AgNW) networks intended for use as the anode electrode in organic light-emitting diodes (OLEDs) to modify the work function (WF) and conductivity of the AgNW networks. This low-cost and facile electroplating method enabled the precise deposition of metal onto the AgNW surface and at the nanowire (NW) junctions. AgNWs coated onto a transparent glass substrate were immersed in four different metal electroplating baths: those containing AgNO3 for Ag electroplating, NiSO4 for Ni electroplating, Cu2P2O7 for Cu electroplating, and PdCl2 for Pd electroplating. The solvated metal ions (Ag+, Ni2+, Cu2+, and Pd2+) in the respective electroplating baths were reduced to the corresponding metals on the AgNW surface in the galvanostatic mode under a constant electric current achieved by linear sweep voltammetry via an external circuit between the AgNW networks (cathode) and a Pt mesh (anode). The amount of electroplated metal was systematically controlled by varying the electroplating time. Scanning electron microscopy images showed that the four different metals (shells) were successfully electroplated on the AgNWs (core), and the nanosize-controlled electroplating process produced metal NWs with varying diameters, conductivities, optical transmittances, and WFs. The metal-electroplated AgNWs were successfully employed as the anode electrodes of the OLEDs. This facile and low-cost method of metal electroplating of AgNWs to increase their WFs and conductivities is a promising development for the fabrication of next-generation OLEDs.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ammar Ahmed ◽  
Ali Azam ◽  
Yanen Wang ◽  
Zutao Zhang ◽  
Ning Li ◽  
...  

AbstractAdditively manufactured nano-MEH systems are widely used to harvest energy from renewable and sustainable energy sources such as wind, ocean, sunlight, raindrops, and ambient vibrations. A comprehensive study focusing on in-depth technology evolution, applications, problems, and future trends of specifically 3D printed nano-MEH systems with an energy point of view is rarely conducted. Therefore, this paper looks into the state-of-the-art technologies, energy harvesting sources/methods, performance, implementations, emerging applications, potential challenges, and future perspectives of additively manufactured nano-mechanical energy harvesting (3DP-NMEH) systems. The prevailing challenges concerning renewable energy harvesting capacities, optimal energy scavenging, power management, material functionalization, sustainable prototyping strategies, new materials, commercialization, and hybridization are discussed. A novel solution is proposed for renewable energy generation and medicinal purposes based on the sustainable utilization of recyclable municipal and medical waste generated during the COVID-19 pandemic. Finally, recommendations for future research are presented concerning the cutting-edge issues hurdling the optimal exploitation of renewable energy resources through NMEHs. China and the USA are the most significant leading forces in enhancing 3DP-NMEH technology, with more than 75% contributions collectively. The reported output energy capacities of additively manufactured nano-MEH systems were 0.5–32 mW, 0.0002–45.6 mW, and 0.3–4.67 mW for electromagnetic, piezoelectric, and triboelectric nanogenerators, respectively. The optimal strategies and techniques to enhance these energy capacities are compiled in this paper. Graphical Abstract


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sahand Eslami ◽  
Stefano Palomba

AbstractThe demand for effective, real-time environmental monitoring and for customized point-of-care (PoC) health, requires the ability to detect low molecular concentrations, using portable, reliable and cost-effective devices. However, traditional techniques often require time consuming, highly technical and laborious sample preparations, as well as expensive, slow and bulky instrumentation that needs to be supervised by laboratory technicians. Consequently, fast, compact, self-sufficient, reusable and cost-effective lab-on-a-chip (LOC) devices, which can perform all the required tasks and can then upload the data to portable devices, would revolutionize any mobile sensing application by bringing the testing device to the field or to the patient. Integrated enhanced Raman scattering devices are the most promising platform to accomplish this vision and to become the basic architecture for future universal molecular sensors and hence an artificial optical nose. Here we are reviewing the latest theoretical and experimental work along this direction.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hye Kyu Choi ◽  
Cheol-Hwi Kim ◽  
Sang Nam Lee ◽  
Tae-Hyung Kim ◽  
Byung-Keun Oh

AbstractThe degeneration or loss of skeletal muscles, which can be caused by traumatic injury or disease, impacts most aspects of human activity. Among various techniques reported to regenerate skeletal muscle tissue, controlling the external cellular environment has been proven effective in guiding muscle differentiation. In this study, we report a nano-sized graphene oxide (sGO)-modified nanopillars on microgroove hybrid polymer array (NMPA) that effectively controls skeletal muscle cell differentiation. sGO-coated NMPA (sG-NMPA) were first fabricated by sequential laser interference lithography and microcontact printing methods. To compensate for the low adhesion property of polydimethylsiloxane (PDMS) used in this study, graphene oxide (GO), a proven cytophilic nanomaterial, was further modified. Among various sizes of GO, sGO (< 10 nm) was found to be the most effective not only for coating the surface of the NM structure but also for enhancing the cell adhesion and spreading on the fabricated substrates. Remarkably, owing to the micro-sized line patterns that guide cellular morphology to an elongated shape and because of the presence of sGO-modified nanostructures, mouse myoblast cells (C2C12) were efficiently differentiated into skeletal muscle cells on the hybrid patterns, based on the myosin heavy chain expression levels. Therefore, the developed sGO coated polymeric hybrid pattern arrays can serve as a potential platform for rapid and highly efficient in vitro muscle cell generation.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sinan Sabuncu ◽  
Adem Yildirim

AbstractThe use of ultrasound in the clinic has been long established for cancer detection and image-guided tissue biopsies. In addition, ultrasound-based methods have been widely explored to develop more effective cancer therapies such as localized drug delivery, sonodynamic therapy, and focused ultrasound surgery. Stabilized fluorocarbon microbubbles have been in use as contrast agents for ultrasound imaging in the clinic for several decades. It is also known that microbubble cavitation could generate thermal, mechanical, and chemical effects in the tissue to improve ultrasound-based therapies. However, the large size, poor stability, and short-term cavitation activity of microbubbles limit their applications in cancer imaging and therapy. This review will focus on an alternative type of ultrasound responsive material; gas-stabilizing nanoparticles, which can address the limitations of microbubbles with their nanoscale size, robustness, and high cavitation activity. This review will be of interest to researchers who wish to explore new agents to develop improved methods for molecular ultrasound imaging and therapy of cancer.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Elliot Y. Makhani ◽  
Ailin Zhang ◽  
Jered B. Haun

AbstractNanoparticles have drawn intense interest as delivery agents for diagnosing and treating various cancers. Much of the early success was driven by passive targeting mechanisms such as the enhanced permeability and retention (EPR) effect, but this has failed to lead to the expected clinical successes. Active targeting involves binding interactions between the nanoparticle and cancer cells, which promotes tumor cell-specific accumulation and internalization. Furthermore, nanoparticles are large enough to facilitate multiple bond formation, which can improve adhesive properties substantially in comparison to the single bond case. While multivalent binding is universally believed to be an attribute of nanoparticles, it is a complex process that is still poorly understood and difficult to control. In this review, we will first discuss experimental studies that have elucidated roles for parameters such as nanoparticle size and shape, targeting ligand and target receptor densities, and monovalent binding kinetics on multivalent nanoparticle adhesion efficiency and cellular internalization. Although such experimental studies are very insightful, information is limited and confounded by numerous differences across experimental systems. Thus, we focus the second part of the review on theoretical aspects of binding, including kinetics, biomechanics, and transport physics. Finally, we discuss various computational and simulation studies of nanoparticle adhesion, including advanced treatments that compare directly to experimental results. Future work will ideally continue to combine experimental data and advanced computational studies to extend our knowledge of multivalent adhesion, as well as design the most powerful nanoparticle-based agents to treat cancer.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yong-Deok Lee ◽  
Hyeon Jeong Shin ◽  
Jounghyun Yoo ◽  
Gayoung Kim ◽  
Min-Kyoung Kang ◽  
...  

AbstractIndocyanine green (ICG) is a clinically approved dye that has shown great promise as a phototheranostic material with fluorescent, photoacoustic and photothermal responses in the near-infrared region. However, it has certain limitations, such as poor photostability and non-specific binding to serum proteins, subjected to rapid clearance and decreased theranostic efficacy in vivo. This study reports stable and biocompatible nanoparticles of ICG (ICG-Fe NPs) where ICG is electrostatically complexed with an endogenously abundant metal ion (Fe3+) and subsequently nanoformulated with a clinically approved polymer surfactant, Pluronic F127. Under near-infrared laser irradiation, ICG-Fe NPs were found to be more effective for photothermal temperature elevation than free ICG molecules owing to the improved photostability. In addition, ICG-Fe NPs showed the markedly enhanced tumor targeting and visualization with photoacoustic/fluorescent signaling upon intravenous injection, attributed to the stable metal complexation that prevents ICG-Fe NPs from releasing free ICG before tumor targeting. Under dual-modal imaging guidance, ICG-Fe NPs could successfully potentiate photothermal therapy of cancer by applying near-infrared laser irradiation, holding potential as a promising nanomedicine composed of all biocompatible ingredients for clinically relevant phototheranostics.


Sign in / Sign up

Export Citation Format

Share Document