Global sensitivity analysis and uncertainty analysis for drought stress parameters in ORYZA (v3) model

2020 ◽  
Author(s):  
Junwei Tan ◽  
Shujun Zhao ◽  
Bo Liu ◽  
Yufeng Luo ◽  
Yuanlai Cui
Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 607
Author(s):  
Deepak Upreti ◽  
Stefano Pignatti ◽  
Simone Pascucci ◽  
Massimo Tolomio ◽  
Zhenhai Li ◽  
...  

The present work reports the global sensitivity analysis of the Aquacrop Open Source (AOS) model, which is the open-source version of the original Aquacrop model developed by the Food and Agriculture Organization (FAO). Analysis for identifying the most influential parameters was based on different strategies of global SA, density-based and variance-based, for the wheat crop in two different geographical locations and climates. The main objectives were to distinguish the model’s influential and non-influential parameters and to examine the yield output sensitivity. We compared two different methods of global sensitivity analysis: the most commonly used variance-based method, EFAST, and the moment independent density-based PAWN method developed in recent years. We have also identified non-influential parameters using Morris screening method, so to provide an idea of the use of non-influential parameters with a dummy parameter approach. For both the study areas (located in Italy and in China) and climates, a similar set of influential parameters was found, although with varying sensitivity. When compared with different probability distribution functions, the probability distribution function of yield was found to be best approximated by a Generalized Extreme Values distribution with Kolmogorov–Smirnov statistic of 0.030 and lowest Anderson–Darling statistic of 0.164, as compared to normal distribution function with Kolmogorov–Smirnov statistic of 0.122 and Anderson–Darling statistic of 4.099. This indicates that yield output is not normally distributed but has a rather skewed distribution function. In this case, a variance-based approach was not the best choice, and the density-based method performed better. The dummy parameter approach avoids to use a threshold as it is a subjective question; it advances the approach to setting up a threshold and gives an optimal way to set up a threshold and use it to distinguish between influential and non-influential parameters. The highly sensitive parameters to crop yield were specifically canopy and phenological development parameters, parameters that govern biomass/yield production and temperature stress parameters rather than root development and water stress parameters.


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Zou Tao ◽  
Li Huajun ◽  
Liu Defu

Based on global sensitivity analysis (GSA), this paper proposes a new risk assessment method for an offshore structure design. This method quantifies all the significances among random variables and their parameters at first. And by comparing the degree of importance, all minor factors would be negligible. Then, the global uncertainty analysis work would be simplified. Global uncertainty analysis (GUA) is an effective way to study the complexity and randomness of natural events. Since field measured data and statistical results often have inevitable errors and uncertainties which lead to inaccurate prediction and analysis, the risk in the design stage of offshore structures caused by uncertainties in environmental loads, sea level, and marine corrosion must be taken into account. In this paper, the multivariate compound extreme value distribution model (MCEVD) is applied to predict the extreme sea state of wave, current, and wind. The maximum structural stress and deformation of a Jacket platform are analyzed and compared with different design standards. The calculation result sufficiently demonstrates the new risk assessment method’s rationality and security.


Sign in / Sign up

Export Citation Format

Share Document