scholarly journals Fitness benefits and costs of floral advertising traits: insights from rayed and rayless phenotypes ofAnacyclus(Asteraceae)

2019 ◽  
Vol 106 (2) ◽  
pp. 231-243
Author(s):  
José Cerca ◽  
Alicia B. Agudo ◽  
Sílvia Castro ◽  
Ana Afonso ◽  
Inés Alvarez ◽  
...  
2012 ◽  
Vol 279 (1744) ◽  
pp. 4015-4023 ◽  
Author(s):  
Fabrice Lagasse ◽  
Celine Moreno ◽  
Thomas Preat ◽  
Frederic Mery

Memory is a complex and dynamic process that is composed of different phases. Its evolution under natural selection probably depends on a balance between fitness benefits and costs. In Drosophila , two separate forms of consolidated memory phases can be generated experimentally: anaesthesia-resistant memory (ARM) and long-term memory (LTM). In recent years, several studies have focused on the differences between these long-lasting memory types and have found that, at the functional level, ARM and LTM are antagonistic. How this functional relationship will affect their evolutionary dynamics remains unknown. We selected for flies with either improved ARM or improved LTM over several generations, and found that flies selected specifically for improvement of one consolidated memory phase show reduced performance in the other memory phase. We also found that improved LTM was linked to decreased longevity in male flies but not in females. Conversely, males with improved ARM had increased longevity. We found no correlation between either improved ARM or LTM and other phenotypic traits. This is, to our knowledge, the first evidence of a symmetrical evolutionary trade-off between two memory phases for the same learning task. Such trade-offs may have an important impact on the evolution of cognitive capacities. On a neural level, these results support the hypothesis that mechanisms underlying these forms of consolidated memory are, to some degree, antagonistic.


Hydrobiologia ◽  
2012 ◽  
Vol 702 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Xiaodong Jiang ◽  
Huishuang Liang ◽  
Wei Yang ◽  
Jie Zhang ◽  
Yunlong Zhao ◽  
...  

2011 ◽  
Vol 178 (1) ◽  
pp. 44-52 ◽  
Author(s):  
Ying Zhen ◽  
Preeti Dhakal ◽  
Mark C. Ungerer

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8886
Author(s):  
Xiaomei Chi ◽  
Jiangnan Sun ◽  
Yushi Yu ◽  
Jia Luo ◽  
Bao Zhao ◽  
...  

Understanding the ecological role of shelters is greatly hampered by the scarcity of long-term laboratory experiments on the trade-off between fitness benefits and costs. This lack probably leads to an underestimation of the negative and/or positive effects on behaviors and growth of marine invertebrates in benthic ecosystems. Although our previous study revealed a significant effect on fitness-related traits of Glyptocidaris crenularis after 31 months, the present study extended it and investigated fitness benefits and/or costs of long-term sheltering on sea urchins to over 7 years. The present long-term study suggests that the previously reported reduction in feeding rate probably resulted from a reduction in reflexive feeding motions (Aristotle’s lantern reflex) rather than changes in foraging behavior. Actively seeking sheltering behavior was negatively impacted in individuals with continuous access to shelters. However, covering and righting behaviors did not differ in sheltered sea urchins, indicating that these behaviors are maintained to escape from adverse environments regardless of shelter. Body size of sea urchins in the group with shelters was significantly lower than those without shelters after 7 years. Weights of gonads and gut were not significantly different after 7 years despite previous observations of differences after ~2.5 years. The present study provides valuable information on the trade-off between fitness benefits and costs to sea urchins residing in shelters. However, the present study is only a laboratory investigation for one urchin species (G. crenularis) which does not consider the complexity of natural environments. Field studies should be carried out with G. crenularis and other sea urchin species, before a more universal conclusion can be drawn.


2020 ◽  
Vol 129 (3) ◽  
pp. 717-727
Author(s):  
Martin Tremmel ◽  
Hadas Steinitz ◽  
Adi Kliot ◽  
Ally Harari ◽  
Yael Lubin

Abstract Most social species outbreed. However, some have persistent inbreeding with occasional outbreeding, and the decision of the individual regarding whether to stay in the natal group and inbreed or to disperse, with the potential to outbreed, is flexible and may depend on social, genetic and ecological benefits and costs. Few of these factors have been investigated experimentally in these systems. The beetle Coccotrypes dactyliperda Fabricius, 1801 (Scolytidae: Xyloborinae) lives in extended family colonies inside date seeds. The beetles inbreed, but some individuals disperse away from the natal seed and may outbreed. We investigated dispersal behaviour and assessed fitness-related measures in inbred and outbred offspring, in addition to the relative abundance of two endosymbionts. We predicted inbred offspring to have higher fitness-related measures and a reduced tendency to disperse than outbred offspring, owing to fitness benefits of cooperation within the colony, whereas increased endosymbiont abundance will promote dispersal of their hosts, thus enhancing their own spread in the population. Dispersing beetles were more active than ones that remained in the natal seed. As predicted, fewer inbred offspring dispersed than outbred offspring, but they matured and dispersed earlier. Fitness-related measures of inbred mothers were either lower (number of offspring) or not different (body mass) from those of outbred mothers. Inbred dispersers had greater amounts of Wolbachia, suggesting a role in dispersal. The results support the hypothesis that inbred females reduce dispersal and that early maturation and dispersal are likely to be benefits of increased cooperation in brood care.


2002 ◽  
Vol 61 (4) ◽  
pp. 465-472 ◽  
Author(s):  
A. W. Illius ◽  
B. J. Tolkamp ◽  
J. Yearsley

The ultimate goal of an organism is to maximise its inclusive fitness, and an important sub-goal must be the optimisation of the lifetime pattern of food intake, in order to meet the nutrient demands of survival, growth and reproduction. The conventional assumption that fitness is maximised by maximising daily food intake, subject to physical and physiological constraints, has been challenged recently. Instead, it can be argued that fitness is maximised by balancing benefits and costs over the organism's lifetime. The fitness benefits of food intake are a function of its contribution to survival, growth (including necessary body reserves) and reproduction. Against these benefits must be set costs. These costs include not only extrinsic foraging costs and risks, such as those due to predation, but also intrinsic costs associated with food intake, such as obesity and oxidative metabolism that may reduce vitality and lifespan. We argue that the aggregate of benefits and costs form the fitness function of food intake and present examples of such an approach to predicting optimal food intake.


Sign in / Sign up

Export Citation Format

Share Document