Resting metabolic rate and daily energy expenditure among two indigenous Siberian populations

1994 ◽  
Vol 6 (6) ◽  
pp. 719-730 ◽  
Author(s):  
PT Katzmarzyk ◽  
WR Leonard ◽  
MH Crawford ◽  
RI Sukernik
2012 ◽  
Vol 216 (3) ◽  
pp. 418-426 ◽  
Author(s):  
V. Careau ◽  
D. Reale ◽  
D. Garant ◽  
F. Pelletier ◽  
J. R. Speakman ◽  
...  

2019 ◽  
Vol 72 (9-10) ◽  
pp. 272-279
Author(s):  
Danijel Slavic ◽  
Dea Karaba-Jakovljevic ◽  
Andrea Zubnar ◽  
Borislav Tapavicki ◽  
Tijana Aleksandric ◽  
...  

Introduction. The difference between 24-hour daily energy intake and total daily energy expenditure determines whether we lose or gain weight. The resting metabolic rate is the major component of daily energy expenditure, which depends on many different factors, but also on the level of physical activity. The aim of the study was to determine anthropometric and metabolic parameters of athletes engaged in different types of training, to compare obtained results and to examine whether there are statistically significant differences among them. Material and Methods. The study included a total of 42 young male athletes divided into two groups. The first group included 21 athletes who were predominantly engaged in aerobic type of training, and the other group of 21 athletes in anaerobic type of training. Anthropometric measurements were taken and resting metabolic rate was assessed using the indirect calorimetry method. The results were statistically analyzed and the differences in parameters between the two groups were compared. Results. Statistically significant differences were established in total body mass, amount of fat-free mass and muscle mass, body mass index, as well as in the relative metabolic indices between two groups of subjects. Conclusion. The percentage of fat-free body mass has the greatest impact on the resting metabolic rate. The rate of metabolic activity of this body compartment is higher in athletes engaged in aerobic than in athletes engaged in anaerobic type of training.


1998 ◽  
Vol 8 (2) ◽  
pp. 143-159 ◽  
Author(s):  
Eric T. Poehlman ◽  
Christopher Melby

In this brief review we examine the effects of resistance training on energy expenditure. The components of daily energy expenditure are described, and methods of measuring daily energy expenditure are discussed. Cross-sectional and exercise intervention studies are examined with respect to their effects on resting metabolic rate, physical activity energy expenditure, postexercise oxygen consumption, and substrate oxidation in younger and older individuals. Evidence is presented to suggest that although resistance training may elevate resting metabolic rate, il does not substantially enhance daily energy expenditure in free-living individuals. Several studies indicate that intense resistance exercise increases postexercise oxygen consumption and shifts substrate oxidation toward a greater reliance on fat oxidation. Preliminary evidence suggests that although resistance training increases muscular strength and endurance, its effects on energy balance and regulation of body weight appear to be primarily mediated by its effects on body composition (e.g., increasing fat-free mass) rather than by the direct energy costs of the resistance exercise.


2015 ◽  
Vol 93 (8) ◽  
pp. 635-644 ◽  
Author(s):  
A.J.M. Dalton ◽  
D.A.S. Rosen ◽  
A.W. Trites

Seasonal changes in daily energy expenditure (DEE) and its key underlying components (costs of resting metabolic rate (RMR), thermoregulation, activity, and growth) were measured to determine seasonal energy requirements, bioenergetic priorities, and potential times of year when unpredicted episodes of nutritional stress would have their greatest effect on female northern fur seals (Callorhinus ursinus (L., 1758)). The mean (±SD) DEE of six captive juvenile female fur seals was 527.8 ± 65.7 kJ·kg−1·d−1 and fluctuated seasonally (lower during summer and winter, and up to 20% greater in spring and fall). RMR also changed significantly with season and was higher in the fall (potentially due to moulting or anticipated migratory activity). However, changes in RMR did not follow the same seasonal trend as those of DEE. The largest component of DEE was RMR (∼80%, on average), followed by the cost of activity (which may have driven some of the seasonal variations in DEE). In contrast, the energetic costs associated with growth and thermoregulation appeared negligible within the scope of overall energy expenditures. Elevated innate costs of RMR and higher growth rates in the fall and summer, respectively, suggest that inadequate nutrition could comparatively have greater negative effects on female fur seals during these seasons.


Obesity ◽  
2018 ◽  
Vol 26 (5) ◽  
pp. 862-868 ◽  
Author(s):  
Bruce M. Wolfe ◽  
Dale A. Schoeller ◽  
Shelly K. McCrady-Spitzer ◽  
Diana M. Thomas ◽  
Chad E. Sorenson ◽  
...  

2020 ◽  
Vol 17 (4) ◽  
pp. 456-463
Author(s):  
Gregory A. Hand ◽  
Robin P. Shook ◽  
Daniel P. O’Connor ◽  
Madison M. Kindred ◽  
Sarah Schumacher ◽  
...  

Background: The present study examined, among weight-stable overweight or obese adults, the effect of increasing doses of exercise energy expenditure (EEex) on changes in total daily energy expenditure (TDEE), total body energy stores, and body composition. Methods: Healthy, sedentary overweight/obese young adults were randomized to one of 3 groups for a period of 26 weeks: moderate-exercise (EEex goal of 17.5 kcal/kg/wk), high-exercise (EEex goal of 35 kcal/kg/wk), or observation group. Individuals maintained body weight within 3% of baseline. Pre/postphysical activity between-group measurements included body composition, calculated energy intake, TDEE, energy stores, and resting metabolic rate. Results: Sixty weight-stable individuals completed the protocols. Exercise groups increased EEex in a stepwise manner compared with the observation group (P < .001). There was no group effect on changes in TDEE, energy intake, fat-free mass, or resting metabolic rate. Fat mass and energy stores decreased among the females in the high-exercise group (P = .007). Conclusions: The increase in EEex did not result in an equivalent increase in TDEE. There was a sex difference in the relationship among energy balance components. These results suggest a weight-independent compensatory response to exercise training with potentially a sex-specific adjustment in body composition.


Biology Open ◽  
2013 ◽  
Vol 2 (6) ◽  
pp. 580-586 ◽  
Author(s):  
K. H. Elliott ◽  
J. Welcker ◽  
A. J. Gaston ◽  
S. A. Hatch ◽  
V. Palace ◽  
...  

The Condor ◽  
2000 ◽  
Vol 102 (3) ◽  
pp. 635-644 ◽  
Author(s):  
Sheldon J. Cooper

Abstract I used behavioral, meteorological, and laboratory metabolism data to calculate daily energy expenditure (DEE) in seasonally acclimatized Mountain Chickadees (Poecile gambeli) and Juniper Titmice (Baeolophus griseus). Analyses of laboratory metabolic data revealed that foraging energy requirements were not significantly higher than alert perching energy requirements. Respective DEE of chickadees and titmice were 48.8 kJ day−1 and 48.3 kJ day−1 in summer and 66.3 kJ day−1 and 98.7 kJ day−1 in winter. DEE as a multiple of basal metabolic rate (BMR) was 2.31 in summer chickadees and 1.91 in summer titmice. DEE was 2.70 times BMR in winter chickadees and 3.43 times BMR in winter titmice. The marked increase in calculated DEE in winter birds compared to summer is in contrast to a pattern of increased DEE in the breeding season for several avian species. These data suggest that winter may be a period of even greater stringency for small birds than previously believed.


Sign in / Sign up

Export Citation Format

Share Document