scholarly journals Associations between amyloid‐β, white matter disease, functional brain networks, and mobility function: Possible indicators of reserve and resilience

2020 ◽  
Vol 16 (S5) ◽  
Author(s):  
Blake R. Neyland ◽  
Christina E. Hugenschmidt ◽  
Samuel N. Lockhart ◽  
Stephanie Okonmah‐Obazee ◽  
Kiran Solingapuram Sai ◽  
...  
2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 918-918
Author(s):  
Blake Neyland ◽  
Christina Hugenschmidt ◽  
Samuel Lockhart ◽  
Laura Baker ◽  
Suzanne Craft ◽  
...  

Abstract Brain pathologies are increasingly understood to confer mobility risk, but the malleability of functional brain networks may be a mechanism for mobility reserve. In particular, white matter hyperintensities (WMH) are strongly associated with mobility and alter functional network connectivity. To assess the potential role of brain networks as a mechanism of mobility reserve, 116 participants with MRI from the Brain Networks and Mobility Function (B-NET) were categorized into 4 groups based on median splits of SPPB scores and WMH burden: Expected Healthy (EH: low WMH, SPPB>10, N=45), Expected Impaired (EI: high WMH, SPPB10, N=24), Unexpected Impaired (EI: low WMH, SPPB<10, N=10) and Unexpected Unhealthy (UH: low WMH, SPPB<10, N=37). Functional brain networks were calculated using graph theory methods and white matter hyperintensities were quantified with the Lesion Segmentation Toolbox (LST) in SPM12. Somatomotor cortex community structure (SMC-CS) was similar between UH and EH with both having higher consistency than EI and UI. However, UH displayed a unique increase in second-order connections between the motor cortex and the anterior cingulate. It is possible that this increase in connections is a signal of higher reserve or resilience in UH participants and may indicate a mechanism of compensation in regards to mobility function and advanced WMH burden. These data suggest functional brain networks may be a mechanism for mobility resilience in older adults at mobility risk due to WMH burden.


2021 ◽  
Vol 11 (11) ◽  
pp. 1535
Author(s):  
Hui Zhang ◽  
Edward S. Hui ◽  
Peng Cao ◽  
Henry K. F. Mak

Previous studies have demonstrated that the accumulation of amyloid-β (Aβ) pathologies has distinctive stage-specific effects on the structural and functional brain networks along the Alzheimer’s disease (AD) continuum. A more comprehensive account of both types of brain network may provide a better characterization of the stage-specific effects of Aβ pathologies. A potential candidate for this joint characterization is the coupling between the structural and functional brain networks (SC-FC coupling). We therefore investigated the effect of Aβ accumulation on global SC-FC coupling in patients with mild cognitive impairment (MCI), AD, and healthy controls. Patients with MCI were dichotomized according to their level of Aβ pathology seen in 18F-flutemetamol PET-CT scans—namely, Aβ-negative and Aβ-positive. Our results show that there was no difference in global SC-FC coupling between different cohorts. During the prodromal AD stage, there was a significant negative correlation between the level of Aβ pathology and the global SC-FC coupling of MCI patients with positive Aβ, but no significant correlation for MCI patients with negative Aβ. During the AD dementia stage, the correlation between Aβ pathology and global SC-FC coupling in patients with AD was positive. Our results suggest that Aβ pathology has distinctive stage-specific effects on global coupling between the structural and functional brain networks along the AD continuum.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S851-S852
Author(s):  
Blake R Neyland ◽  
Robert Kraft ◽  
Mary Lyles ◽  
Stephen Kritchevsky ◽  
Paul J Laurienti ◽  
...  

Abstract Declining mobility is associated with increased accumulation of white matter hyperintensities (WMH). However, a high WMH burden is not always accompanied by impaired mobility. Our previous work demonstrates that some variance in mobility may be explained by brain network connectivity. Here, we extended this work by measuring WMHs and brain networks in older adults participating in a lifestyle intervention. The Short Physical Performance Battery (SPPB) and resting state functional magnetic resonance imaging (fMRI) were collected before and after a 5-month caloric restriction plus aerobic exercise intervention in 57 obese, sedentary adults aged 65-78. Participants were categorized based on median splits of baseline SPPB scores and WMH burden: Expected Healthy (EH: low WMH, SPPB≥11, n=16), Expected Impaired (EI: high WMH, SPPB≤10, n=17), Unexpected Healthy (UH: high WMH, SPPB≥11, n=12), and Unexpected Impaired (UI: low WMH, SPPB≤10, n=12). Graph theory-based methods were used to characterize brain networks and compare the four groups. At baseline, the somatomotor cortex community structure (SMC-CS) was less consistent in EI (p=0.05) and UI (p=0.23) compared to EH. The EI (mean=1.25, p=0.003) and UI (mean=1.57, p=0.001) significantly improved their SPPB scores following the intervention. Although both groups had equivalent SPPB scores, SMC-CS was less consistent in the UH than EH (p=0.16). However, UH displayed a significant (p=0.004) increase in second-order connections to the precuneus compared to EH. These data suggest that studying brain networks could improve the understanding of the development of mobility disability and the CNS contributions to mobility independent of white matter disease.


2012 ◽  
Vol 9 (1) ◽  
pp. 98-105 ◽  
Author(s):  
Rajesh K. Kana ◽  
Lauren E. Libero ◽  
Christi P. Hu ◽  
Hrishikesh D. Deshpande ◽  
Jeffrey S. Colburn

2019 ◽  
Vol 45 (6) ◽  
pp. 964-974 ◽  
Author(s):  
JeYoung Jung ◽  
Sunyoung Choi ◽  
Kyu-Man Han ◽  
Aram Kim ◽  
Wooyoung Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document