scholarly journals 3D neural circuit visualization by neural tracing and tissue clearing for dementia study

2020 ◽  
Vol 16 (S3) ◽  
Author(s):  
Michael Siu‐Lun Lai ◽  
Krit Lee ◽  
Maja Højvang Sørensen ◽  
Raymond Chuen‐Chung Chang
Author(s):  
Guobin Xia ◽  
Yong Han ◽  
Fantao Meng ◽  
Yanlin He ◽  
Dollada Srisai ◽  
...  

AbstractThe high comorbidity between obesity and mental disorders, such as depression and anxiety, often exacerbates metabolic and neurological symptoms significantly. However, neural mechanisms that underlie reciprocal control of feeding and mental states are largely elusive. Here we report that melanocortin 4 receptor (MC4R) neurons located in the dorsal bed nucleus of the stria terminus (dBNST) engage in the regulation of mentally associated weight gain by receiving GABAergic projections from hypothalamic AgRP neurons onto α5-containing GABAA receptors and serotonergic afferents onto 5-HT3 receptors. Chronic treatment with a high-fat diet (HFD) significantly blunts the hyperexcitability of AgRP neurons in response to not only hunger but also anxiety and depression-like stimuli. Such HFD-mediated desensitization reduces GABAergic outputs from AgRP neurons to downstream MC4RdBNST neurons, resulting in severe mental dysregulation. Genetic enhancement of the GABAAR-α5 or suppression of the 5-HT3R within the MC4RdBNST neurons not only abolishes HFD-induced anxiety and depression but also robustly reduces body weight by suppression of food intake. To gain further translational insights, we revealed that combined treatment of zonisamide (enhancing the GABAAR-α5 signaling) and granisetron (a selective 5-HT3R antagonist) alleviates mental dysfunction and yields a robust reversal of diet-induced obesity by reducing total calorie intake and altering food preference towards a healthy low-fat diet. Our results unveil a neural mechanism for reciprocal control of appetite and mental states, which culminates in a novel zonisamide-granisetron cocktail therapy for potential tackling the psychosis-obesity comorbidity.


2021 ◽  
Vol 22 (9) ◽  
pp. 4593
Author(s):  
Lieve Moons ◽  
Lies De Groef

The human brain contains 86 billion neurons [...]


Sign in / Sign up

Export Citation Format

Share Document