interleukin 33
Recently Published Documents


TOTAL DOCUMENTS

916
(FIVE YEARS 316)

H-INDEX

63
(FIVE YEARS 9)

2022 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Yang Tan ◽  
Hao-Yue Jing ◽  
Yue-Rong Ma

Chronic kidney disease (CKD) is a major public health problem that affects more than 10% of the population worldwide and has a high mortality rate. Therefore, it is necessary to identify novel treatment strategies for CKD. Incidentally, renal fibrosis plays a central role in the progression of CKD to end-stage renal disease (ESRD). The activation of inflammatory pathways leads to the development of renal fibrosis. In fact, interleukin-33 (IL-33), a newly discovered member of the interleukin 1 (IL-1) cytokine family, is a crucial regulator of the inflammatory process. It exerts pro-inflammatory and pro-fibrotic effects via the suppression of tumorigenicity 2 (ST2) receptor, which, in turn, activates other inflammatory pathways. Although the role of this pathway in cardiac, pulmonary, and hepatic fibrotic diseases has been extensively studied, its precise role in renal fibrosis has not yet been completely elucidated. Recent studies have shown that a sustained activation of IL-33/ST2 pathway promotes the development of renal fibrosis. However, with prolonged research in this field, it is expected that the IL-33/ST2 pathway will be used as a diagnostic and prognostic tool for renal diseases. In addition, the IL-33/ST2 pathway seems to be a new target for the future treatment of CKD. Here, we review the mechanisms and potential applications of the IL-33/ST2 pathway in renal fibrosis; such that it can help clinicians and researchers to explore effective treatment options and develop novel medicines for CKD patients.


2022 ◽  
pp. 171-181
Author(s):  
Camila Rodrigues Ferraz ◽  
Fernanda Soares Rasquel-Oliveira ◽  
Sergio Marques Borghi ◽  
Anelise Franciosi ◽  
Thacyana Teixeira Carvalho ◽  
...  

Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 138
Author(s):  
Devasahayam Arokia Balaya Rex ◽  
Yashwanth Subbannayya ◽  
Prashant Kumar Modi ◽  
Akhina Palollathil ◽  
Lathika Gopalakrishnan ◽  
...  

Interleukin-33 (IL-33), a member of the IL-1 superfamily cytokines, is an endogenous danger signal and a nuclear-associated cytokine. It is one of the essential mediators of both innate and adaptive immune responses. Aberrant IL-33 signaling has been demonstrated to play a defensive role against various infectious and inflammatory diseases. Although the signaling responses mediated by IL-33 have been previously reported, the temporal signaling dynamics are yet to be explored. To this end, we applied quantitative temporal phosphoproteomics analysis to elucidate pathways and proteins induced by IL-33 in THP-1 monocytes. Employing a TMT labeling-based quantitation and titanium dioxide (TiO2)-based phosphopeptide enrichment strategy followed by mass spectrometry analysis, we identified and quantified 9448 unique phosphopeptides corresponding to 3392 proteins that showed differential regulation. Of these, 171 protein kinases, 60 phosphatases and 178 transcription factors were regulated at different phases of IL-33 signaling. In addition to the confirmed activation of canonical signaling modules including MAPK, NFκB, PI3K/AKT modules, pathway analysis of the time-dependent phosphorylation dynamics revealed enrichment of several cellular processes, including leukocyte adhesion, response to reactive oxygen species, cell cycle checkpoints, DNA damage and repair pathways. The detailed quantitative phosphoproteomic map of IL-33 signaling will serve as a potentially useful resource to study its function in the context of inflammatory and pathological conditions.


2021 ◽  
Vol 9 (6) ◽  
pp. 851-854
Author(s):  
Khalil Ismail A. Mohammed ◽  
Saad Hasan Mohammed Ali ◽  
Suha A. Al-Fukhar ◽  
Wifaq M. Ali Al-Wattar ◽  
Jinan M. Mousa

Salmonella typhoid and paratyphoid are transmitted mainly by the fecal-oral route. This study was designed to find the correlation between Salmonella and IgM, IgG, and the levels of interleukin-33, TNF-α, and LTB 4. The study was carried out from March 2020 to January 2021 for the detection of Salmonellosis in 100 suspected patients with age group ranging from 17 - 69 years, who attended Baghdad teaching hospitals that had been examined and defined as suspected cases by a specialized physician with the recording of clinical manifestation. The diagnosis was done by immunochromatography method, a blood sample was taken from the patient as well as other 30 healthy controls matching in age and gender. The study included measurement of the level of interleukin -33, Tumor necrosis Factor α, and Leukotreins B4 level in sera of patients and healthy control. The results indicated that anti –salmonella IgM positive in 54 cases, anti- salmonella IgG positive in 46 cases, and 18 positive cases with both IgM and IgG.  The Level of interleukin 33, Tumor necrosis Factor – α increased significantly while the serum Leukotreins B4 level decreased significantly in patients sera as compared with healthy control.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 107
Author(s):  
Corinne Cayrol

Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.


Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Zhizhong Mi ◽  
Ling Zhao ◽  
Ming Sun ◽  
Ting Gao ◽  
Yong Wang ◽  
...  

Rabies is a zoonotic infectious disease caused by rabies virus (RABV), and its mortality rate is as high as 100%. Globally, an average of 60,000 people die from rabies each year. The most effective method to prevent and limit rabies is vaccination, but it is currently expensive and inefficient, consisting of a 3-dose series of injections and requiring to be immunized annually. Therefore, it is urgent to develop a single dose of long-acting rabies vaccine. In this study, recombinant rabies virus (rRABV) overexpressing interleukin-33 (IL-33) was constructed and designated as rLBNSE-IL33, and its effect was evaluated in a mouse model. The results showed that rLBNSE-IL33 could enhance the quick production of RABV-induced immune antibodies as early as three days post immunization (dpi) through the activation of dendritic cells (DCs), a component of the innate immune system. Furthermore, rLBNSE-IL33 induced high-level virus-neutralizing antibodies (VNA) production that persisted for 8 weeks by regulating the T cell-dependent germinal center (GC) reaction, thus resulting in better protection against rabies. Our data suggest the IL-33 is a novel adjuvant that could be used to enhance innate and humoral immune responses by activating the DC-GC reaction, and thus, rLBNSE-IL33 could be developed as a safe and effective vaccine for animals.


Sign in / Sign up

Export Citation Format

Share Document