sensory transduction
Recently Published Documents


TOTAL DOCUMENTS

348
(FIVE YEARS 54)

H-INDEX

54
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Vladyslava Pechuk ◽  
Gal Goldman ◽  
Yehuda Salzberg ◽  
Aditi H Chaubey ◽  
R Aaron Bola ◽  
...  

How sexually dimorphic behavior is encoded in the nervous system is poorly understood. Here, we characterize the dimorphic nociceptive behavior in C. elegans and study the underlying circuits, which are composed of the same neurons but are wired differently. We show that while sensory transduction is similar in the two sexes, the downstream network topology markedly shapes behavior. We fit a network model that replicates the observed dimorphic behavior in response to external stimuli, and use it to predict simple network rewirings that would switch the behavior between the sexes. We then show experimentally that these subtle synaptic rewirings indeed flip behavior. Strikingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that network topologies that enable efficient avoidance of noxious cues have a reproductive "cost". Our results present a deconstruction of the design of a neural circuit that controls sexual behavior, and how to reprogram it.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vishal R. Patel ◽  
Arturo M. Salinas ◽  
Darong Qi ◽  
Shipra Gupta ◽  
David J. Sidote ◽  
...  

AbstractLigand binding to membrane proteins is critical for many biological signaling processes. However, individual binding events are rarely directly observed, and their asynchronous dynamics are occluded in ensemble-averaged measures. For membrane proteins, single-molecule approaches that resolve these dynamics are challenged by dysfunction in non-native lipid environments, lack of access to intracellular sites, and costly sample preparation. Here, we introduce an approach combining cell-derived nanovesicles, microfluidics, and single-molecule fluorescence colocalization microscopy to track individual binding events at a cyclic nucleotide-gated TAX-4 ion channel critical for sensory transduction. Our observations reveal dynamics of both nucleotide binding and a subsequent conformational change likely preceding pore opening. Kinetic modeling suggests that binding of the second ligand is either independent of the first ligand or exhibits up to ~10-fold positive binding cooperativity. This approach is broadly applicable to studies of binding dynamics for proteins with extracellular or intracellular domains in native cell membrane.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
John Lee ◽  
Kosuke Kosuke Kawai ◽  
Jeffrey R Holt ◽  
Gwenaelle Geleoc

Acoustic overexposure and aging can damage auditory synapses in the inner ear by a process known as synaptopathy. These insults may also damage hair bundles and the sensory transduction apparatus in auditory hair cells. However, a connection between sensory transduction and synaptopathy has not been established. To evaluate potential contributions of sensory transduction to synapse formation and development, we assessed inner hair cell synapses in several genetic models of dysfunctional sensory transduction, including mice lacking Transmembrane Channel-like (Tmc) 1, Tmc2 or both, in Beethoven mice which carry a dominant Tmc1 mutation and in Spinner mice which carry a recessive mutation in Transmembrane inner ear (Tmie). Our analyses reveal loss of synapses in the absence of sensory transduction and preservation of synapses in Tmc1-null mice following restoration of sensory transduction via Tmc1 gene therapy. These results provide insight into the requirement of sensory transduction for hair cell synapse development and maturation.


2021 ◽  
pp. 21-28
Author(s):  
Stephen W. English ◽  
Eduardo E. Benarroch

The afferent, or sensory, systems include visual, auditory, somatosensory, and interoceptive (ie, pain, temperature, and visceral sensation) inputs to the central nervous system. This chapter briefly reviews principles of transduction, relay, and processing of sensory information. The dorsal column–medial lemniscal system is reviewed in more detail. However, pain, vision, olfaction, and hearing are reviewed in subsequent chapters. Sensory transduction refers to the transformation of a stimulus into an electric signal. This process involves several distinct families of cation channels and associated receptor types.


2021 ◽  
Vol 15 ◽  
Author(s):  
Federica Genovese ◽  
Johannes Reisert ◽  
Vladimir J. Kefalov

The past decades have seen tremendous progress in our understanding of the function of photoreceptors and olfactory sensory neurons, uncovering the mechanisms that determine their properties and, ultimately, our ability to see and smell. This progress has been driven to a large degree by the powerful combination of physiological experimental tools and genetic manipulations, which has enabled us to identify the main molecular players in the transduction cascades of these sensory neurons, how their properties affect the detection and discrimination of stimuli, and how diseases affect our senses of vision and smell. This review summarizes some of the common and unique features of photoreceptors and olfactory sensory neurons that make these cells so exciting to study.


Author(s):  
Arián Avalos ◽  
Ian M. Traniello ◽  
Eddie Pérez Claudio ◽  
Tugrul Giray

Visual learning is vital to the behavioral ecology of the Western honey bee (Apis mellifera). Honey bee workers forage for floral resources, a behavior that requires the learning and long-term memory of visual landmarks, but how these memories are mapped to the brain remains poorly understood. To address this gap in our understanding, we collected bees that successfully learned visual associations in a conditioned aversion paradigm and compared gene expression correlates of memory formation in the mushroom bodies, a higher-order sensory integration center classically thought to contribute to learning, as well as the optic lobes, the primary visual neuropil responsible for sensory transduction of visual information. We quantitated expression of CREB and CaMKii, two classical genetic markers of learning and fen-1, a gene specifically associated with punishment learning in vertebrates. As expected, we report substantial involvement of the mushroom bodies for all three markers but additionally demonstrate the involvement of the optic lobes across a similar time course. Our findings imply the molecular involvement of a sensory neuropil during visual associative learning parallel to a higher-order brain region, furthering our understanding of how a tiny brain processes environmental signals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mayumi Matsunaga ◽  
Maki Kimura ◽  
Takehito Ouchi ◽  
Takashi Nakamura ◽  
Sadao Ohyama ◽  
...  

Odontoblasts play critical roles in dentin formation and sensory transduction following stimuli on the dentin surface. Exogenous stimuli to the dentin surface elicit dentinal sensitivity through the movement of fluids in dentinal tubules, resulting in cellular deformation. Recently, Piezo1 channels have been implicated in mechanosensitive processes, as well as Ca2+ signals in odontoblasts. However, in human odontoblasts, the cellular responses induced by mechanical stimulation, Piezo1 channel expression, and its pharmacological properties remain unclear. In the present study, we examined functional expression of the Piezo1 channel by recording direct mechanical stimulation-induced Ca2+ signaling in dentin matrix protein 1 (DMP-1)-, nestin-, and dentin sialophosphoprotein (DSPP)-immunopositive human odontoblasts. Mechanical stimulation of human odontoblasts transiently increased intracellular free calcium concentration ([Ca2+]i). Application of repeated mechanical stimulation to human odontoblasts resulted in repeated transient [Ca2+]i increases, but did not show any desensitizing effects on [Ca2+]i increases. We also observed a transient [Ca2+]i increase in the neighboring odontoblasts to the stimulated cells during mechanical stimulation, showing a decrease in [Ca2+]i with an increasing distance from the mechanically stimulated cells. Application of Yoda1 transiently increased [Ca2+]i. This increase was inhibited by application of Gd3+ and Dooku1, respectively. Mechanical stimulation-induced [Ca2+]i increase was also inhibited by application of Gd3+ or Dooku1. When Piezo1 channels in human odontoblasts were knocked down by gene silencing with short hairpin RNA (shRNA), mechanical stimulation-induced [Ca2+]i responses were almost completely abolished. Piezo1 channel knockdown attenuated the number of Piezo1-immunopositive cells in the immunofluorescence analysis, while no effects were observed in Piezo2-immunopositive cells. Alizarin red staining distinctly showed that pharmacological activation of Piezo1 channels by Yoda1 significantly suppressed mineralization, and shRNA-mediated knockdown of Piezo1 also significantly enhanced mineralization. These results suggest that mechanical stimulation predominantly activates intracellular Ca2+ signaling via Piezo1 channel opening, rather than Piezo2 channels, and the Ca2+ signal establishes intercellular odontoblast-odontoblast communication. In addition, Piezo1 channel activation participates in the reduction of dentinogenesis. Thus, the intracellular Ca2+ signaling pathway mediated by Piezo1 channels could contribute to cellular function in human odontoblasts in two ways: (1) generating dentinal sensitivity and (2) suppressing physiological/reactional dentinogenesis, following cellular deformation induced by hydrodynamic forces inside dentinal tubules.


Science ◽  
2021 ◽  
Vol 373 (6556) ◽  
pp. eabg6539
Author(s):  
Jose A. Matta ◽  
Shenyan Gu ◽  
Weston B. Davini ◽  
David S. Bredt

The neurotransmitter acetylcholine (ACh) acts in part through a family of nicotinic ACh receptors (nAChRs), which mediate diverse physiological processes including muscle contraction, neurotransmission, and sensory transduction. Pharmacologically, nAChRs are responsible for tobacco addiction and are targeted by medicines for hypertension and dementia. Nicotinic AChRs were the first ion channels to be isolated. Recent studies have identified molecules that control nAChR biogenesis, trafficking, and function. These nAChR accessories include protein and chemical chaperones as well as auxiliary subunits. Whereas some factors act on many nAChRs, others are receptor specific. Discovery of these regulatory mechanisms is transforming nAChR research in cells and tissues ranging from central neurons to spinal ganglia to cochlear hair cells. Nicotinic AChR–specific accessories also enable drug discovery on high-confidence targets for psychiatric, neurological, and auditory disorders.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Andrey Rozenberg ◽  
Keiichi Inoue ◽  
Hideki Kandori ◽  
Oded Béjà

Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Vishal R Patel ◽  
Arturo M Salinas ◽  
Darong Qi ◽  
Shipra Gupta ◽  
David J Sidote ◽  
...  

Ligand binding to membrane proteins is critical for many biological signaling processes. However, individual binding events are rarely directly observed, and their asynchronous dynamics are occluded in ensemble-averaged measures. For membrane proteins, single-molecule approaches that resolve these dynamics are challenged by dysfunction in nonnative lipid environments, lack of access to intracellular sites, and costly sample preparation. Here, we introduce an approach combining cell-derived nanovesicles, microfluidics, and single-molecule fluorescence colocalization microscopy to track individual binding events at a cyclic nucleotide-gated TAX-4 ion channel critical for sensory transduction. Our observations reveal dynamics of both nucleotide binding and a subsequent conformational change likely preceding pore opening. We further show that binding of the second ligand in the tetrameric channel is less cooperative than previously estimated from ensemble-averaged binding measures. This approach is broadly applicable to studies of binding dynamics for proteins with extracellular or intracellular domains in native cell membrane.


Sign in / Sign up

Export Citation Format

Share Document