Stochastic Bifurcations in a Bistable Reaction-Diffusion System with Neumann Boundary Conditions

1983 ◽  
Vol 495 (2-3) ◽  
pp. 151-160 ◽  
Author(s):  
H. Malchow ◽  
W. Ebeling ◽  
R. Feistel ◽  
L. Schimansky-Geier
2020 ◽  
Vol 18 (1) ◽  
pp. 1552-1564
Author(s):  
Huimin Tian ◽  
Lingling Zhang

Abstract In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions. By constructing some suitable auxiliary functions and using differential inequality techniques, we show some sufficient conditions to ensure that the solution u ( x , t ) u(x,t) blows up at a finite time under appropriate measure sense. Furthermore, an upper and a lower bound on blow-up time are derived under some appropriate assumptions. At last, two examples are presented to illustrate the application of our main results.


2021 ◽  
Vol 88 (1-2) ◽  
pp. 155
Author(s):  
Halima Nachid ◽  
F. N'Gohisse ◽  
N'Guessan Koffi

We study the quenching behavior of the solution of a semi- linear reaction-diffusion system with nonlinear boundary conditions. We prove that the solution quenches in finite time and its quenching time goes to the one of the solution of the differential system. We also obtain lower and upper bounds for quenching time of the solution.


2014 ◽  
Vol 971-973 ◽  
pp. 1017-1020
Author(s):  
Jun Zhou Shao ◽  
Ji Jun Xu

This paper deals with the properties of one kind of reaction-diffusion equations with Neumann boundary conditions based on the comparison principles. The relations of parameter and the situation of the coupled about equations are used to construct the global existent super-solutions and the blowing-up sub-solutions, and then we obtain the conditions of the global existence and blow-up in finite time solutions with the processing techniques of inequality.


Sign in / Sign up

Export Citation Format

Share Document