Atomic cation‐vacancy engineering of NiFe‐layered double hydroxides for improved activity and stability towards the oxygen evolution reaction

Author(s):  
Lishan Peng ◽  
Na Yang ◽  
Yuqi Yang ◽  
Qing Wang ◽  
Xiaoying Xie ◽  
...  
Author(s):  
ShuXuan Liu ◽  
Huiwen Zhang ◽  
Enlai Hu ◽  
Tuyuan Zhu ◽  
ChunYan Zhou ◽  
...  

The sluggish kinetics and four electron oxidation process of oxygen evolution reaction (OER) limit the application of water splitting. Recently, NiFe-layered double hydroxides (NiFe LDHs) have shown great potential to...


2016 ◽  
Vol 52 (5) ◽  
pp. 908-911 ◽  
Author(s):  
Zhiyi Lu ◽  
Li Qian ◽  
Yang Tian ◽  
Yaping Li ◽  
Xiaoming Sun ◽  
...  

A ternary NiFeMn-LDH with an optimized transition metal ratio is developed as an advanced catalyst for the oxygen evolution reaction.


2019 ◽  
Vol 55 (89) ◽  
pp. 13370-13373 ◽  
Author(s):  
Rushuo Li ◽  
Yanhui Wang ◽  
Wei Li ◽  
Shuyu Zhou ◽  
Pengfei Tian ◽  
...  

A novel Zr-doping strategy was highly effective to enhance the OER activity of NiFe LDHs via accelerating the charge transfer.


2019 ◽  
Vol 55 (62) ◽  
pp. 9212-9215 ◽  
Author(s):  
Jiang Han ◽  
Gen Chen ◽  
Xiaohe Liu ◽  
Ning Zhang ◽  
Shuquan Liang ◽  
...  

Co3FePx/C nanocomposites were derived from one-step phosphorization of anthraquinone-2-sulfonate (AQS2) intercalated Co3Fe layered double hydroxides (Co3Fe LDHs).


2018 ◽  
Vol 42 (16) ◽  
pp. 13963-13970 ◽  
Author(s):  
Leila Jafari Foruzin ◽  
Biuck Habibi ◽  
Zolfaghar Rezvani

In this study, ultrasonication, a facile and rapid process, was utilized for the preparation of ternary-component layered double hydroxides (LDHs), Ni3AlxFe1−x-LDHs, as the electrocatalyst material for the oxygen evolution reaction (OER) in a neutral solution.


Sign in / Sign up

Export Citation Format

Share Document