carbon matrix
Recently Published Documents


TOTAL DOCUMENTS

949
(FIVE YEARS 391)

H-INDEX

56
(FIVE YEARS 19)

2022 ◽  
Vol 429 ◽  
pp. 131945
Author(s):  
Danyang He ◽  
Liyun Cao ◽  
Jianfeng Huang ◽  
Shuainan Li ◽  
Yongqiang Feng ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Xueli Li ◽  
Zhonghua Xiang

AbstractThe atomic configurations of FeNx moieties are the key to affect the activity of oxygen rection reaction (ORR). However, the traditional synthesis relying on high-temperature pyrolysis towards combining sources of Fe, N, and C often results in the plurality of local environments for the FeNx sites. Unveiling the effect of carbon matrix adjacent to FeNx sites towards ORR activity is important but still is a great challenge due to inevitable connection of diverse N as well as random defects. Here, we report a proof-of-concept study on the evaluation of covalent-bonded carbon environment connected to FeN4 sites on their catalytic activity via pyrolysis-free approach. Basing on the closed π conjugated phthalocyanine-based intrinsic covalent organic polymers (COPs) with well-designed structures, we directly synthesized a series of atomically dispersed Fe-N-C catalysts with various pure carbon environments connected to the same FeN4 sites. Experiments combined with density functional theory demonstrates that the catalytic activities of these COPs materials appear a volcano plot with the increasement of delocalized π electrons in their carbon matrix. The delocalized π electrons changed anti-bonding d-state energy level of the single FeN4 moieties, hence tailored the adsorption between active centers and oxygen intermediates and altered the rate-determining step.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 201
Author(s):  
Xun Sun ◽  
Xiao Yan ◽  
Huijuan Su ◽  
Libo Sun ◽  
Lijun Zhao ◽  
...  

Herein, a non-stacked γ-Fe2O3/C@TiO2 double-layer hollow nano photocatalyst has been developed with ultrathin nanosheets-assembled double shells for photodegradation phenol. High catalytic performance was found that the phenol could be completely degraded in 135 min under visible light, due to the moderate band edge position (VB at 0.59 eV and CB at −0.66 eV) of the non-stacked γ-Fe2O3/C@TiO2, which can expand the excitation wavelength range into the visible light region and produce a high concentration of free radicals (such as ·OH, ·O2−, holes). Furthermore, the interior of the hollow composite γ-Fe2O3 is responsible for charge generation, and the carbon matrix facilitates charge transfer to the external TiO2 shell. This overlap improved the selection/utilization efficiency, while the unique non-stacked double-layered structure inhibited initial charge recombination over the photocatalysts. This work provides new approaches for photocatalytic applications with γ-Fe2O3/C-based materials.


2022 ◽  
Vol 23 (1) ◽  
pp. 563
Author(s):  
Valentin Job ◽  
Julie Laloy ◽  
Vincent Maloteau ◽  
Emile Haye ◽  
Stéphane Lucas ◽  
...  

Hospital-acquired infections are responsible for a significant part of morbidity and mortality. Among the possible modes of transmission, this study focuses on environmental surfaces by developing innovative antibacterial coatings that can be applied on interior fittings in hospitals. This work aims to optimize a coating made of an amorphous carbon matrix doped with silver (a-C:H:Ag) produced by a hybrid PVD/PECVD process and to evaluate its antibacterial activity. We present a coating characterization (chemical composition and morphology) as well as its stability in an ageing process and after multiple exposures to bacteria. The antibacterial activity of the coatings is demonstrated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria through several bioassays. Moreover, the data suggest a crucial role of silver diffusion towards the surface and nanoparticle formation to explain the very promising anti-bacterial activities reported in this work.


Author(s):  
V Kiran Kumar ◽  
Sourav Ghosh ◽  
Naresh Vangapally ◽  
Govind Ummethala ◽  
Sai Rama Krishna Malladi ◽  
...  

Abstract Herein, we report a carbon-fiber based freestanding electrode for NaVPO4F cathodes in sodium-ion batteries. The replacement of conventional aluminum foil with a carbon fiber mat-based current collector results in significant improvement in capacity at high rates and charge-discharge cycle stability. Petroleum-pitch (P-Pitch) has dual functions. P-pitch is used as a binder to bind NaVPO4F particles onto the carbon fiber mat, which helps to eliminate typical organic binders. At the same time, P-Pitch acts as a conducting precursor to coat onto NaVPO4F particles. The amount of P-pitch required to achieve stable electrochemical performance is optimized. As a result, 15 and 20 % of P-pitch in the composite NaVPO4F electrodes (15P_NVPF@CF and 20P_NVPF@CF) shows stable electrochemical performances. A reversible capacity of 120 and 119 mAh g−1 are observed for 15P_NVPF@CF and 20P_NVPF@CF, with 97 and 98 % retention in capacity after 300 cycles, respectively. Further, at a 0.5 C current rate, 15P_NVPF@CF and 20P_NVPF@CF electrodes show 86 and 87 % capacity retention after 1000 cycles. The significant electrochemical performance of these freestanding electrodes is ascribed to the interlinked carbon matrix with NaVPO4F particles and carbon-fiber mat, which provides a continuous path for electronic conduction and faster kinetics of NaVPO4F particles


2022 ◽  
pp. 134700
Author(s):  
Mahesh M. Shanbhag ◽  
Nagaraj P. Shetti ◽  
Shankara S. Kalanur ◽  
Bruno G. Pollet ◽  
Mallikarjuna N. Nadagouda ◽  
...  

2022 ◽  
Vol 518 ◽  
pp. 230741
Author(s):  
Xiaoming Zhang ◽  
Luojiang Zhang ◽  
Wenyong Zhang ◽  
Song Xue ◽  
Yongbing Tang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document