High density polyethylene/acrylonitrile butadiene rubber blends: Morphology, mechanical properties, and compatibilization

1995 ◽  
Vol 57 (4) ◽  
pp. 449-465 ◽  
Author(s):  
Josephine George ◽  
Reethamma Joseph ◽  
Sabu Thomas ◽  
K. T. Varughese
2014 ◽  
Vol 55 (5) ◽  
pp. 1203-1210 ◽  
Author(s):  
Deepalekshmi Ponnamma ◽  
Josephine George ◽  
Martin George Thomas ◽  
Chin Han Chan ◽  
Srećko Valić ◽  
...  

2015 ◽  
Vol 754-755 ◽  
pp. 201-204
Author(s):  
Ragunathan Santiagoo ◽  
Sam Sung Ting ◽  
Azlinda Abdul Ghani ◽  
Hanafi Ismail ◽  
Awiezan Mislan

The compatibilizer effect of ENR-50 on the tensile properties of high density polyethylene (HDPE)/recycled acrylonitrile butadiene rubber (NBRr)/banana skin powder (BSP)/ composites has been studies. HDPE/NBRr/BSP composites were prepared by melt mixing technique using twin-screw at 180 °C for 9 minutes at rotor speed 50 rpm. The six different composites studied were 100/0/5, 80/20/5, 70/30/5, 60/40/5, 50/50/5, and 40/60/5. As for compatibilized composite a fix 5 wt% of ENR-50 was evaluated. The specimens were analysed for tensile strength and elongation at break (Eb). The results showed that tensile strength and the elongation at break were decreases with the increasing of NBRr loading. However for ENR-50 compatibilized composites, higher tensile strength and elongation at break was recorded. The ENR-50 was found to be an excellent compatibilizer for HDPE/NBRr/BSP composites.


2016 ◽  
Vol 835 ◽  
pp. 284-288 ◽  
Author(s):  
Sirirat Wacharawichanant ◽  
Chawisa Wisuttrakarn ◽  
Kasana Chomphunoi

The effects of the montmorillonite clay surface modified with 25-30 wt% of methyl dihydroxyethyl hydrogenated tallow ammonium (Clay-MHA) on morphology and mechanical properties of poly(lactic acid) (PLA)/acrylonitrile-butadiene rubber copolymer (NBR)/Clay-MHA composites were investigated. The composites of blends of PLA/NBR with Clay-MHA were prepared by melt mixing in an internal mixer and molded by compression molding. The ratio of PLA and NBR was 80/20 by weight and the Clay-MHA content was 1, 3, 5 and 7 phr. The results showed Young’s modulus and stress at break of the composites increased with increasing Clay-MHA content. While the tensile strength and strain at break of the composites decreased with increasing Clay-MHA content. Scanning electron microscopy analysis showed that the addition of Clay-MHA could improve the miscibility of PLA and NBR to be homogeneous blends and the pore in polymer blends was disappeared.


Sign in / Sign up

Export Citation Format

Share Document