ethylene propylene
Recently Published Documents


TOTAL DOCUMENTS

2646
(FIVE YEARS 302)

H-INDEX

60
(FIVE YEARS 6)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Mai M. El-Zayat ◽  
Maysa A. Mohamed ◽  
Eslam Aboelezz

Abstract This study, uses two polyfunctional monomers (PFMs) namely ethylene glycol dimethacrylate (EGDMA) as a bifunctional monomer and trimethylolpropane triacrylate (TMPTA) as a trifunctional monomer were used as co-agents in irradiation crosslinking of Ethylene Propylene Diene Monomer Rubber (EPDM). The effect of concentration of each PFM and irradiation dose on the crosslinking density, gel content, swelling behavior in motor and brake oils, in addition to the mechanical and thermal stability properties of EPDM was investigated in detailed. The results showed a remarkable increase in the gel content, crosslinking density and mechanical properties as the concentration of PFMs increased from 1 to 5 phr (parts per hundred parts of rubber). The various blends of EPDM with the trifunctional monomer express the highest gel content and crosslinking density than those with the bifunctional monomer. The addition of 5 phr of TMPTA to EPDM causes a dramatic improvement in tensile strength (TS) of the prepared blend reached to 188% compared to neat EPDM at 50 kGy. At the same time, the maximum TS of the blend containing 5 phr of EGDMA achieved only 41% compared to neat EPDM at an irradiation dose of 100 kGy. The swelling of irradiated samples in brake oil revealed a stronger oil resistance than motor oil. For all irradiated samples, the oil uptake decreased with the irradiation dose up to 100 kGy. The EPDM samples containing 5 phr of TMPTA recorded the highest oil resistance at 100 kGy. The results also showed that the addition of PFMs and irradiation treatment of the various prepared blends improved the thermal stability of EPDM. Finally, neat EPDM and the blends containing 1 and 3 phr of EGDMA can be used as radiation dosimeters in the very high dose range (50–200 kGy).


Author(s):  
Zhengwei Lin ◽  
Qinghong Zhang ◽  
Gongliang Wang ◽  
Jie Mao ◽  
Martin Hoch ◽  
...  

ABSTRACT Moisture crosslinking of polyolefins has attracted increasing attention because of its high efficiency, low cost, and easy processing. However, the crucial shortcoming of moisture crosslinking is that the side reaction of peroxide scorch (precrosslinking) simultaneously occurs in silane grafting. It has been recognized that making peroxide precrosslinking useful is an effective way to broaden the application of moisture crosslinking. A novel foaming process combined with moisture crosslinking is proposed. The matrix of ethylene–propylene–diene terpolymer grafted with silane vinyl triethoxysilane (EPDM-g-VTES) was prepared by melt grafting, with dicumyl peroxide as initiator. Foaming was then carried out with azodicarbonamide (AC) as the blowing agent by making use of precrosslinking. Subsequently, the EPDM-g-VTES foams were immersed in a water bath to achieve moisture crosslinking with dibutyl tin dilaurate as the catalyst. The results showed that VTES was grafted onto EPDM and the EPDM-g-VTES foams were successfully crosslinked by moisture. The EPDM-g-VTES compounds with AC obtained great cells by compression molding with the help of precrosslinking. The mechanical property of the EPDM-g-VTES foam was improved by moisture crosslinking. The moisture-cured foam with 4 wt% AC had an expansion ratio of about three times, which could bear large deformation and showed a high energy-absorption effect.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 187
Author(s):  
Traian Zaharescu ◽  
Carmen Mateescu

The EPDM (ethylene-propylene-diene monomer) hybrids with improved thermal and radiation strengths containing 1 and 5 phr of polyhedral oligomeric silsesquioxane (vinyl-POSS, Ov-POSS) and/or 2 phr of microalgae (Chlorella vulgaris (CV) and Spirulinaplatensis (SP)) powders were investigated in respect to their thermal stability after γ-irradiation. The material durability under accelerated degradation was qualified by chemiluminescence and gelation, which prove the contribution of inorganic filler and microalgae extracts on the increase of hybrid thermal stability, as well as the interaction between added components (POSS and CV or SP). The activation energies and the durabilities under accelerated degradation were calculated, indicating their suitable usage as appropriate materials in various applications. The reported results indicate the improvement effect of both microalgal powders on the oxidation strength, but the contribution of Spirulinaplatensis grabs attention on its efficient effects upon the prevention of degradation under accelerated aging conditions. The thermal performances of the tested EPDM based hybrids are remarkably ameliorated, if the certain formulation includes Ov-POSS (5 phr) and Spirulinaplatensis (2 phr), certifying its suitability for the pertinent applications.


2022 ◽  
Vol 66 (1) ◽  
pp. 105-110
Author(s):  
Joseph H. Baker ◽  
Jingwen Zhang ◽  
Mingzhen Zhao ◽  
Michael Mullins ◽  
Hung-Jue Sue

2021 ◽  
pp. 009524432110635
Author(s):  
Gislaine Hermenegildo ◽  
Nayrim B Guerra ◽  
Marcelo Giovanela ◽  
Janaina da Silva Crespo ◽  
Larissa N Carli

The effects of three curing systems on rheometric, morphological, physical-mechanical, thermal, and dynamic properties of ethylene–propylene–diene monomer (EPDM) composites was investigated. The influence of thermo-oxidative aging on crosslink density and physical-mechanical properties was studied. Based on a standard composition for application at high temperatures, EPDM formulations with semi-efficient vulcanization systems (ES), efficient vulcanization systems (ED), and peroxide curing systems (EP) were prepared. Experimental results indicated that EPDM compounds cured with efficient vulcanization systems exhibit the highest scorch time with an intermediate maximum torque value at 150°C. The filler dispersion in the elastomeric matrix was greater than 94%; however, the ED formulation showed a more pronounced decrease, with the increase in deformation indicating a greater filler–filler interaction. In comparison with those cured with peroxide and semi-efficient systems, EPDM formulations cured with an efficient system presented better thermal resistance and the crosslink density was sufficient to maintain the mechanical integrity, leading to an intermediate hardness value, tensile strength, modulus, and greater elongation at breaking. In summary, the results indicated that the efficient curing system was the most appropriate to be used in the envelope’s manufacture, due to the better performance of the mechanical properties associated with the better resistance to thermal aging.


2021 ◽  
Vol 2120 (1) ◽  
pp. 012031
Author(s):  
Anis Akilah Binti Ameer Ali ◽  
Hafisoh Ahmad ◽  
Hoon Yap ◽  
Hafizul Azizi Bin Ismail

Abstract Past research has reported the challenges regarding on degradation and aging due to high localization of electric field at triple point areas of polymeric insulator. The different materials and designs of polymeric insulator have initiated the partial discharge and arching activities which eventually lead to the insulation failures. The compounding of nanomaterials in the polymer shows a promising result to overcome this problem by redistributing the uniformity of electrical field lines on the insulator. In the present work, ethylene-propylene-diene rubber (EPDM) and titanium dioxide (TiO2) is introduced as nano composites that been embedded into insulator’s housing made of 1) silicone rubber (SiR) and 2) Ethylene Propylene Diene Monomer (EPDM) Rubber. Titanium dioxide (TiO2) is a semiconductor material that can be formed in different sizes either micron or nano-sized filler and has high relative permittivity that be able to reduce the high electrical stresses on high voltage equipment. Meanwhile EPDM shows good mechanical profile, excellent resistance properties and low cost. Therefore, it brings to the new opportunity to fabricate the nanocomposite based on both materials which exhibits an improved electrical properties and good distribution of electric field on polymeric outdoor insulators. In depth investigation was carried out to analyze the effect of different nano-filler loading in the compound and behavior of nanocomposites at different polymer base. An 11kV polymeric insulator is modelled to be simulated by using COMSOL Multiphysics software under dry-clean surface conditions to investigate the electric field distribution at terminal ends and along the insulator creepage path. The Electrostatics interface from the AC/DC Module is used in the evaluation of electric field distribution of insulator model correspondingly with the variations in filler percentage in the host matrix.


Sign in / Sign up

Export Citation Format

Share Document