Structure and thermal behavior of poly(L-lactic acid) clay nanocomposites: Effect of preparation method as a function of the nanofiller modification level

2011 ◽  
Vol 124 (4) ◽  
pp. 2999-3006 ◽  
Author(s):  
Sotirios I. Marras ◽  
Ioannis Zuburtikudis
2009 ◽  
Vol 31 (6) ◽  
pp. 1028-1036 ◽  
Author(s):  
R. Rezanavaz ◽  
M.K. Razavi Aghjeh ◽  
A.A. Babaluo

Polymer ◽  
2016 ◽  
Vol 107 ◽  
pp. 211-222 ◽  
Author(s):  
F.R. Beltrán ◽  
M.U. de la Orden ◽  
V. Lorenzo ◽  
E. Pérez ◽  
M.L. Cerrada ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1095 ◽  
Author(s):  
Shuvra Singha ◽  
Mikael S. Hedenqvist

Poly(lactic acid) (PLA) is considered to be among the best biopolymer substitutes for the existing petroleum-based polymers in the field of food packaging owing to its renewability, biodegradability, non-toxicity and mechanical properties. However, PLA displays only moderate barrier properties to gases, vapors and organic compounds, which can limit its application as a packaging material. Hence, it becomes essential to understand the mass transport properties of PLA and address the transport challenges. Significant improvements in the barrier properties can be achieved by incorporating two-dimensional clay nanofillers, the planes of which create tortuosity to the diffusing molecules, thereby increasing the effective length of the diffusion path. This article reviews the literature on barrier properties of PLA/clay nanocomposites. The important PLA/clay nanocomposite preparation techniques, such as solution intercalation, melt processing and in situ polymerization, are outlined followed by an extensive account of barrier performance of nanocomposites drawn from the literature. Fundamentals of mass transport phenomena and the factors affecting mass transport are also presented. Furthermore, mathematical models that have been proposed/used to predict the permeability in polymer/clay nanocomposites are reviewed and the extent to which the models are validated in PLA/clay composites is discussed.


Sign in / Sign up

Export Citation Format

Share Document