Determination of the Hansen solubility parameters with a novel optimization method

2015 ◽  
Vol 133 (16) ◽  
pp. n/a-n/a ◽  
Author(s):  
Ming Weng
Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3091
Author(s):  
Mohammed Ghazwani ◽  
Prawez Alam ◽  
Mohammed H. Alqarni ◽  
Hasan S. Yusufoglu ◽  
Faiyaz Shakeel

This research deals with the determination of solubility, Hansen solubility parameters, dissolution properties, enthalpy–entropy compensation, and computational modeling of a naturally-derived bioactive compound trans-resveratrol (TRV) in water, methanol, ethanol, n-propanol, n-butanol, propylene glycol (PG), and various PG + water mixtures. The solubility of TRV in six different mono-solvents and various PG + water mixtures was determined at 298.2–318.2 K and 0.1 MPa. The measured experimental solubility values of TRV were regressed using six different computational/theoretical models, including van’t Hoff, Apelblat, Buchowski–Ksiazczak λh, Yalkowsly–Roseman, Jouyban–Acree, and van’t Hoff–Jouyban–Acree models, with average uncertainties of less than 3.0%. The maxima of TRV solubility in mole fraction was obtained in neat PG (2.62 × 10−2) at 318.2 K. However, the minima of TRV solubility in the mole fraction was recorded in neat water (3.12 × 10−6) at 298.2 K. Thermodynamic calculation of TRV dissolution properties suggested an endothermic and entropy-driven dissolution of TRV in all studied mono-solvents and various PG + water mixtures. Solvation behavior evaluation indicated an enthalpy-driven mechanism as the main mechanism for TRV solvation. Based on these data and observations, PG has been chosen as the best mono-solvent for TRV solubilization.


2021 ◽  
Author(s):  
Shalmali Bapat ◽  
Stefan O. Kilian ◽  
Hartmut Wiggers ◽  
Doris Segets

<p>A thorough understanding of complex interactions within particulate systems is a key for knowledge-based formulations. Hansen solubility parameters (HSP) are widely used to assess the compatibility of the dispersed phase with the continuous phase. At present, the determination of HSP is often based on a liquid ranking list obtained by evaluating a pertinent dispersion parameter using only one pre-selected characterization method. Furthermore, one cannot rule out the possibility of subjective judgment especially for liquids for which it is difficult to decipher the compatibility or underlying interactions. As a result, the end value of HSP might be of little or no information. To overcome these issues, we introduce a generalized technology-agnostic combinatorics-based approach. We discuss the principles of the approach and the implications of evaluating and reporting particle HSP values. We demonstrate the approach by using SiN<sub>x</sub> particles. We leverage the analytical centrifugation data to evaluate stability trajectories of SiN<sub>x</sub> dispersions in various liquids to deduce particle-liquid compatibility. </p>


2020 ◽  
Vol 60 (9) ◽  
pp. 1026-1032
Author(s):  
M. Djabeur ◽  
Y. Bouhadda ◽  
T. Fergoug ◽  
A. C. Djendara ◽  
A. Hamimed

Sign in / Sign up

Export Citation Format

Share Document