inverse gas chromatography
Recently Published Documents


TOTAL DOCUMENTS

1038
(FIVE YEARS 76)

H-INDEX

51
(FIVE YEARS 6)

2021 ◽  
Vol 11 (21) ◽  
pp. 10243
Author(s):  
Kareem Yusuf ◽  
Osama Shekhah ◽  
Zeid ALOthman ◽  
Mohamed Eddaoudi

The desire to customize the properties of a material through complete control over both its chemical and architectural structure has created a constant and persistent need for efficient and convenient characterization techniques. Inverse gas chromatography (IGC) is considered a useful characterization method for probing the material’s surface properties, like its enthalpies of adsorption, which are the key stimulus components for their adsorption performance. Here, we conclusively review the significance of a less common application of the IGC technique for the physicochemical characterization of metal-organic frameworks (MOFs), which are an innovative subclass of porous materials with matchless properties in terms of structure design and properties. This review focuses on the fundamental theory and instrumentation of IGC as well as its most significant applications in the field of MOF characterization to shed more light on this unique technique.


2021 ◽  
Vol 3 ◽  
Author(s):  
Anett Kondor ◽  
Alba Santmarti ◽  
Andreas Mautner ◽  
Daryl Williams ◽  
Alexander Bismarck ◽  
...  

Volumetric N2 adsorption at −196°C is generally accepted as “gold standard” for estimating the Brunauer-Emmet-Teller (BET) surface area of nanocellulose. It is unclear however, whether the BET surface area of nanocellulose obtained at such low temperatures and pressures is meaningful at an absolute sense, as nanocellulose is used at ambient temperature and pressure. In this work, a systematic evaluation of the BET surface area of nanocellulose using highly crystalline bacterial cellulose (BC) as model nanocellulose was undertaken to achieve a comprehensive understanding of the limitations of BET method for nanocellulose. BET surface area obtained using volumetric N2 adsorption at −196°C was compared with the BET surface area acquired from gravimetric experiments based on n-octane adsorption using dynamic vapour sorption (DVS) and n-octane adsorption determined by inverse gas chromatography (iGC), both at 25°C. It was found that the BET surface area calculated from volumetric N2 adsorption data was 25% lower than that of n-octane adsorption at 25°C obtained using DVS and iGC adsorption methods. These results supported the hypothesis that the BET surface area of nanocellulose is both a molecular scale (N2vs n-octane, molecular cross section of 0.162 nm2vs 0.646 nm2) and temperature (−196°C vs 25°C) dependent property. This study also demonstrates the importance of selecting appropriate BET pressure range based on established criteria and would suggest that room temperature measurement is more relevant for many nanocellulose applications.


Author(s):  
Eftychios Hadjittofis ◽  
Silvia M. Vargas ◽  
James D. Litster ◽  
Kyra L. Sedransk Campbell

The interplay between polymorphism and facet-specific surface energy on the dissolution of crystals is examined in this work. It is shown that, using cationic additives, it is possible to produce star-shaped calcite crystals at very high supersaturations. In crystallization processes following the Ostwald rule of stages these star-shaped crystals appear to have higher solubility than both their rhombohedral counterparts and needle-shaped aragonite crystals. The vapour pressures of vaterite, aragonite, star-shaped calcite and rhombohedral calcite crystals are measured using thermogravimetric analysis and the corresponding enthalpies of melting are obtained. Using inverse gas chromatography, the surface energy of the aforementioned crystals is measured as well and the surface energy of the main crystal facets is calculated. Combining the effect of facet-specific surface energies and the enthalpies of melting on a modified version of the classical solubility equation for regular solutions, it is proved that the star-shaped calcite crystals can indeed have higher apparent solubility than aragonitecrystals.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1579
Author(s):  
Ricardo Almeida ◽  
Eduardo Ferraz ◽  
Julio Santarén ◽  
José A. F. Gamelas

The surface properties of two sepiolite samples and one palygorskite sample were compared using inverse gas chromatography (IGC). Samples were previously conditioned at appropriate temperatures for the removal of all zeolitic water. Dispersive (or Lifshitz–van der Waals) component of the surface energy (γsd), specific interactions (−ΔGas) with π electron donor bases (1-alkenes), and nanomorphology indices (IMχT) based on the injections of cycloalkanes and a branched alkane were measured. From IGC data, at 240 °C, it was found that the palygorskite was clearly distinguished from the sepiolites. The palygorskite possessed a lower γsd, larger −ΔGas with 1-alkenes, and remarkably higher IMχT. Slight differences could also be observed between the two sepiolite samples with the same origin. The results were rationalized in terms of the structural features of the two studied minerals. The larger channels of the sepiolite allow for a better insertion of the n-alkanes (longer retention times) while excluding the bulkier probes, such as cyclooctane or 2,2,4-trimethylpentane. Accordingly, the corresponding γsd values were larger and the IMχT values were lower (higher surface nanoroughness) for the sepiolites. Regarding Lewis acid–base properties, all the sample’s surfaces evidenced a very strong amphoteric character. The present results highlight the potential of the evaluated samples for, e.g., adsorption processes with volatile organic compounds or matrix–filler interactions regarding the production of composite structures with Lewis acid–base matrices.


Langmuir ◽  
2021 ◽  
Author(s):  
Elizabeth H. Denis ◽  
Carlos G. Fraga ◽  
Nicholas L. Huggett ◽  
William C. Weaver ◽  
Lydia A. Rush ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document