scholarly journals Solubilization of Trans-Resveratrol in Some Mono-Solvents and Various Propylene Glycol + Water Mixtures

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3091
Author(s):  
Mohammed Ghazwani ◽  
Prawez Alam ◽  
Mohammed H. Alqarni ◽  
Hasan S. Yusufoglu ◽  
Faiyaz Shakeel

This research deals with the determination of solubility, Hansen solubility parameters, dissolution properties, enthalpy–entropy compensation, and computational modeling of a naturally-derived bioactive compound trans-resveratrol (TRV) in water, methanol, ethanol, n-propanol, n-butanol, propylene glycol (PG), and various PG + water mixtures. The solubility of TRV in six different mono-solvents and various PG + water mixtures was determined at 298.2–318.2 K and 0.1 MPa. The measured experimental solubility values of TRV were regressed using six different computational/theoretical models, including van’t Hoff, Apelblat, Buchowski–Ksiazczak λh, Yalkowsly–Roseman, Jouyban–Acree, and van’t Hoff–Jouyban–Acree models, with average uncertainties of less than 3.0%. The maxima of TRV solubility in mole fraction was obtained in neat PG (2.62 × 10−2) at 318.2 K. However, the minima of TRV solubility in the mole fraction was recorded in neat water (3.12 × 10−6) at 298.2 K. Thermodynamic calculation of TRV dissolution properties suggested an endothermic and entropy-driven dissolution of TRV in all studied mono-solvents and various PG + water mixtures. Solvation behavior evaluation indicated an enthalpy-driven mechanism as the main mechanism for TRV solvation. Based on these data and observations, PG has been chosen as the best mono-solvent for TRV solubilization.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Faiyaz Shakeel ◽  
Md. Khalid Anwer ◽  
Nazrul Haq ◽  
Ibrahim A. Alsarra

AbstractThe solubilization, Hansen solubility parameters (HSPs) and apparent thermodynamic parameters of a novel anticancer medicine osimertinib (OMT) in binary propylene glycol (P) + water (W) cosolvent mixtures were evaluated. The mole fraction solubility (xe) of OMT in various (P + W) cosolvent mixtures including neat P and neat W was determined at T = 298.2–318.2 K and p = 0.1 MPa by applying a saturation shake flask method. HSPs of OMT, neat P, neat W and (P + W) cosolvent compositions free of OMT were also estimated. The xe values of OMT were regressed with Van’t Hoff, modified Apelblat, Yalkowsky-Roseman, Jouyban-Acree and Jouyban-Acree-Van’t Hoff models with an average errors of <3.0 %. The highest and lowest xe value of OMT was estimated in neat P (2.70 × 10−3 at T = 318.2 K) and neat W (1.81 × 10−5 at T = 298.2 K), respectively. Moreover, HSP of OMT was found to be closed with that of neat P. The solubility of OMT was found to be increased significantly with an increase in temperature and P mass fraction in all (P + W) cosolvent compositions including neat P and neat W. The results of activity coefficients suggested higher molecular interactions in OMT-P combination compared with OMT-W combination. The results of thermodynamic studies indicated an endothermic and entropy-driven dissolution of OMT in all (P + W) cosolvent compositions including neat P and neat W.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7052
Author(s):  
Faiyaz Shakeel ◽  
Mohsin Kazi ◽  
Fars K. Alanazi ◽  
Prawez Alam

Between 293.2 and 313.2 K and at 0.1 MPa, the solubility of the weak base, cinnarizine (CNZ) (3), in various {Transcutol-P (TP) (1) + water (2)} combinations is reported. The Hansen solubility parameters (HSP) of CNZ and various {(TP) (1) + water (2)} mixtures free of CNZ were also predicted using HSPiP software. Five distinct cosolvency-based mathematical models were used to link the experimentally determined solubility data of CNZ. The solubility of CNZ in mole fraction was increased with elevated temperature and TP mass fraction in {(TP) (1) + water (2)} combinations. The maximum solubility of CNZ in mole fraction was achieved in neat TP (5.83 × 10−2 at 313.2 K) followed by the minimum in neat water (3.91 × 10−8 at 293.2 K). The values of mean percent deviation (MPD) were estimated as 2.27%, 5.15%, 27.76%, 1.24% and 1.52% for the “Apelblat, van’t Hoff, Yalkowsky–Roseman, Jouyban–Acree, and Jouyban–Acree–van’t Hoff models”, respectively, indicating good correlations. The HSP value of CNZ was closed with that of neat TP, suggesting the maximum solubilization of CNZ in TP compared with neat water and other aqueous mixtures of TP and water. The outcomes of the apparent thermodynamic analysis revealed that CNZ dissolution was endothermic and entropy-driven in all of the {(TP) (1) + water (2)} systems investigated. For {(TP) (1) + water (2)} mixtures, the enthalpy-driven mechanism was determined to be the driven mechanism for CNZ solvation. TP has great potential for solubilizing the weak base, CNZ, in water, as demonstrated by these results.


2021 ◽  
Author(s):  
Shalmali Bapat ◽  
Stefan O. Kilian ◽  
Hartmut Wiggers ◽  
Doris Segets

<p>A thorough understanding of complex interactions within particulate systems is a key for knowledge-based formulations. Hansen solubility parameters (HSP) are widely used to assess the compatibility of the dispersed phase with the continuous phase. At present, the determination of HSP is often based on a liquid ranking list obtained by evaluating a pertinent dispersion parameter using only one pre-selected characterization method. Furthermore, one cannot rule out the possibility of subjective judgment especially for liquids for which it is difficult to decipher the compatibility or underlying interactions. As a result, the end value of HSP might be of little or no information. To overcome these issues, we introduce a generalized technology-agnostic combinatorics-based approach. We discuss the principles of the approach and the implications of evaluating and reporting particle HSP values. We demonstrate the approach by using SiN<sub>x</sub> particles. We leverage the analytical centrifugation data to evaluate stability trajectories of SiN<sub>x</sub> dispersions in various liquids to deduce particle-liquid compatibility. </p>


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2743 ◽  
Author(s):  
Faiyaz Shakeel ◽  
Nazrul Haq ◽  
Sultan Alshehri

The solubility values and thermodynamic parameters of a natural phytomedicine/nutrient piperine (PPN) in Transcutol-HP (THP) + water combinations were determined. The mole fraction solubilities (xe) of PPN in THP + water combinations were recorded at T = 298.2–318.2 K and p = 0.1 MPa by the shake flask method. Hansen solubility parameters (HSPs) of PPN, pure THP, pure water and THP + water mixtures free of PPN were also computed. The xe values of PPN were correlated well with “Apelblat, Van’t Hoff, Yalkowsky–Roseman, Jouyban–Acree and Jouyban–Acree–Van’t Hoff” models with root mean square deviations of < 2.0%. The maximum and minimum xe value of PPN was found in pure THP (9.10 × 10−2 at T = 318.2 K) and pure water (1.03 × 10−5 at T = 298.2 K), respectively. In addition, HSP of PPN was observed more closed with that of pure THP. The thermodynamic parameters of PPN were obtained using the activity coefficient model. The results showed an endothermic dissolution of PPN at m = 0.6–1.0 in comparison to other THP + water combinations studied. In addition, PPN dissolution was recorded as entropy-driven at m = 0.8–1.0 compared with other THP + water mixtures evaluated.


2020 ◽  
Vol 60 (9) ◽  
pp. 1026-1032
Author(s):  
M. Djabeur ◽  
Y. Bouhadda ◽  
T. Fergoug ◽  
A. C. Djendara ◽  
A. Hamimed

Sign in / Sign up

Export Citation Format

Share Document