scale particle
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 66)

H-INDEX

25
(FIVE YEARS 5)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2194
Author(s):  
Kostas Giannis ◽  
Carsten Schilde ◽  
Jan Henrik Finke ◽  
Arno Kwade

The purpose of this work is to simulate the powder compaction of pharmaceutical materials at the microscopic scale in order to better understand the interplay of mechanical forces between particles, and to predict their compression profiles by controlling the microstructure. For this task, the new framework of multi-contact discrete element method (MC-DEM) was applied. In contrast to the conventional discrete element method (DEM), MC-DEM interactions between multiple contacts on the same particle are now explicitly taken into account. A new adhesive elastic-plastic multi-contact model invoking neighboring contact interaction was introduced and implemented. The uniaxial compaction of two microcrystalline cellulose grades (Avicel® PH 200 (FMC BioPolymer, Philadelphia, PA, USA) and Pharmacel® 102 (DFE Pharma, Nörten-Hardenberg, Germany) subjected to high confining conditions was studied. The objectives of these simulations were: (1) to investigate the micromechanical behavior; (2) to predict the macroscopic behavior; and (3) to develop a methodology for the calibration of the model parameters needed for the MC-DEM simulations. A two-stage calibration strategy was followed: first, the model parameters were directly measured at the micro-scale (particle level) and second, a meso-scale calibration was established between MC-DEM parameters and compression profiles of the pharmaceutical powders. The new MC-DEM framework could capture the main compressibility characteristics of pharmaceutical materials and could successfully provide predictions on compression profiles at high relative densities.


Author(s):  
Xiaodong Wang ◽  
Xuesong Mei ◽  
Xintian Wang ◽  
Bin Liu ◽  
Zheng Sun ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Qiang Ma ◽  
Yusheng Qiu ◽  
Run Zhang ◽  
E Lv ◽  
Yipu Huang ◽  
...  

The 210Po/210Pb disequilibrium was attempted to reveal the small-scale particle dynamics in the eastern tropical North Pacific. Seawater samples in the full water column were collected from three sites in the Tehuantepec bowl near the East Pacific Ridge for determination of dissolved and particulate 210Po and 210Pb. Our results show that TPo/TPb activity ratios in the full water column at the three sites are less than 1, with an average of 0.56, indicating that the total 210Po in the oligotrophic sea is significantly deficient. The activity ratios of DPo/DPb in the dissolved phase are less than 1, while those in the particulate phase are greater than 1 (except for the bottom 300 m), indicating fractionation between 210Po and 210Pb in the scavenging process. A negative linear relationship between 210Po deficit and silicate proves that biological activities are responsible for 210Po deficiency in the upper 200 m. However, the deficit of 210Po in the bottom 300 m may be caused by the horizontal transport of the hydrothermal plume. After correcting the horizontal contribution, the removal rates of 210Po for the 200–1,500 m and the bottom 300 m layers increased by 7.5–21 and 26.1–29.5%, respectively. Correspondingly, the variation range of the residence time of a total 210Po became smaller. Our calculations suggest that horizontal transport is acting as a stabilizer for small-scale variation in the 210Po deficit in the eastern tropical North Pacific. Our study highlights the need to pay more attention to the small-scale variation of 210Po deficit when applying 210Po/210Pb disequilibria to trace biogeochemical processes, and the mechanism responsible for this variation deserves further study.


2021 ◽  
pp. 251-266
Author(s):  
Mahmood M. Al-Mamari ◽  
Sameh A. Kantoush ◽  
Tetsuya Sumi

AbstractFlash floods in wadi systems are a very important environmental issue, and their monitoring is necessary for many applications, including water resource management, irrigation and flood control. However, monitoring networks are very rare and lack spatial distribution features. In this study, image-based techniques were used to quantify and monitor flash floods in wadi channels by using two different methods. In the first section, we employed photogrammetry processing technique to quantify post-peak flood discharges by using a drone survey to build a digital elevation model (DEM) with a high resolution and calibrated and validated the model with a field survey (levelling measurements). This technique used drone-collected images to construct a DEM for extracting a cross-sectional profile and elevation points to calculate the peak discharge using the slope-area method with the Manning equation. In the second section, we combined the previous technique with the large-scale particle image velocimetry (LSPIV) technique to measure flash flood discharge by installing a fixed camera on a road bridge crossing a wadi channel and using a digitally extracted cross section from the DEM in the analysis. The results of those techniques show a high efficiency that is equivalent to that of conventional methods.


2021 ◽  
Vol 928 ◽  
Author(s):  
Jiaqi Li ◽  
Aliza Abraham ◽  
Michele Guala ◽  
Jiarong Hong

We present a field study of snow settling dynamics based on simultaneous measurements of the atmospheric flow field and snow particle trajectories. Specifically, a super-large-scale particle image velocimetry (SLPIV) system using natural snow particles as tracers is deployed to quantify the velocity field and identify vortex structures in a 22 m  $\times$  39 m field of view centred 18 m above the ground. Simultaneously, we track individual snow particles in a 3 m  $\times$  5 m sample area within the SLPIV using particle tracking velocimetry. The results reveal the direct linkage among vortex structures in atmospheric turbulence, the spatial distribution of snow particle concentration and their settling dynamics. In particular, with snow turbulence interaction at near-critical Stokes number, the settling velocity enhancement of snow particles is multifold, and larger than what has been observed in previous field studies. Super-large-scale particle image velocimetry measurements show a higher concentration of snow particles preferentially located on the downward side of the vortices identified in the atmospheric flow field. Particle tracking velocimetry, performed on high resolution images around the reconstructed vortices, confirms the latter trend and provides statistical evidence of the acceleration of snow particles, as they move toward the downward side of vortices. Overall, the simultaneous multi-scale particle imaging presented here enables us to directly quantify the salient features of preferential sweeping, supporting it as an underlying mechanism of snow settling enhancement in the atmospheric surface layer.


2021 ◽  
Author(s):  
Duong Hoang ◽  
Harsh Bhatia ◽  
Peter Lindstrom ◽  
Valerio Pascucci

2021 ◽  
Author(s):  
Leonard F. Pease ◽  
Jason Serkowski ◽  
Timothy G. Veldman ◽  
Jonathan Willams ◽  
Xiao-Ying Yu ◽  
...  

Abstract In this paper, we evaluate the hypothesis that bump arrays can be used to separate particles from turbulent flows entering the array. Microfluidic bump arrays are known for separating particles by size from laminar inlet flows. However, turbulent inlet flows have not been explored but become important as microfluidic bump arrays are scaled up to mesofluidic bump arrays. We find experimentally that particle separation is indeed effective at higher Reynolds numbers. These experimental findings portend industrial scale particle separation due to the higher flow rates they facilitate.


Author(s):  
Seth Avram Schweitzer ◽  
Edwin Alfred Cowen

In recent years field-scale applications of image-based velocimetry methods, often referred to as large scale particle image velocimetry (LSPIV), have been increasingly deployed. These velocimetry measurements have several advantages—they allow high resolution, non-contact measurement of surface velocity over a large two dimensional area, from which the bulk flow can be inferred. However, visiblelight LSPIV methods can have significant limitations. The water surface often lacks natural features that can be tracked in the visible and generally requires seeding with tracer particles, which creates concerns regarding the fidelity with which tracer particles track the flow, and introduces challenges in achieving sufficient and uniform seeding density, in particular in regions with appreciable velocity accelerations such as turbulence. In LSPIV, image collection is generally limited to daylight hours, and can suffer from non-uniformity of illumination across the camera’s field of view. Due to these issues LSPIV often requires spatio-temporal averaging, and as a result is generally able to extracting the mean, but not the instantaneous, velocity field, and hence is often not a suitable tool for calculating turbulence metrics of the flow.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4287
Author(s):  
Yuanjie Xiao ◽  
Meng Wang ◽  
Xiaoming Wang ◽  
Juanjuan Ren ◽  
Weidong Wang ◽  
...  

The quality of compaction of unbound aggregate materials with permeable gradation plays a vital role in their field performance; however, there are currently few unanimously accepted techniques or quality control criteria available for ensuring adequate compaction of such materials in either laboratory or field applications. This paper presented testing results of a laboratory gyratory compaction study where the combinations of gyratory parameters were properly designed using the orthogonal array theory. Innovative real-time particle motion sensors were employed to record particle movement characteristics during the compaction process and provide a meso-scale explanation about compaction mechanisms. Particle abrasion and breakage were also quantified from particle shape digitized from the three-dimensional (3D) laser scanner before and after compaction. The optimal combination of gyratory parameters that yields the best compaction performance was determined from the orthogonal testing results with the relative importance of major influencing parameters ranked accordingly. Meso-scale particle movement at the upper center and center side positions of the specimen are promising indicators of compaction quality. The gyratory compaction process can be consistently divided into three distinct stages according to both macro-scale performance indicators and meso-scale particle movement characteristics. A statistically significant bi-linear relationship was found to exist between relative breakage index and maximum abrasion depth, whereas the quality of compaction and the extent of particle breakage appear to be positively correlated, thus necessitating the cost-effective balance between them. The results of this study could provide technical insights and guidance to field compaction of unbound permeable aggregates.


Sign in / Sign up

Export Citation Format

Share Document