cellulose ether
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 31)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Sarah Schleicher ◽  
Inka-Rosalia Lottje ◽  
Petra Mischnick

AbstractExact quantification of the molar ratios of isotopologous mixed O-methyl-O-methyl-d3-cellooligosaccharides (COS) comprising all combinations from fully methylated to fully deuteromethylated constituents within an individual degree of polymerization (DP) is the key step in the analysis of the substituent distribution over the polymer chains in methyl celluloses (MC). Deuteromethylation of MC is performed to level chemical differences, but due to a m/z range of 3 DP·ΔMe/Me-d3, bias during MS measurement cannot certainly be excluded. Therefore, ionization, ion transportation, and ion storage were studied with an electrospray ionization ion trap mass spectrometer (ESI-IT-MS) using binary equimolar mixtures of per-O-Me- and per-O-Me-d3-COS, defining the border cases of a particular Me/Me-d3-profile. Reference data of their molar ratio were determined after reductive amination with m-amino benzoic acid by HPLC-UV. COS of DP2–6 were measured as their sodium adducts at c = 10−6 M by syringe pump infusion. The impact of the RF voltage of the ion trap (TD), the octopole RF and DC voltages, and the Cap Exit potential on absolute and relative ion intensities were studied. Adapting the Cap Exit voltage was essential for correct quantification of DP2, while all COS of higher DP behaved insensitive with respect to bias. To check whether any bias occurs in the electrospray ionization process of the isotopologs, concentration-dependent measurements were performed with optimized instrumental settings for each DP. Intensity ratios IR = I (Me-d3)/I (Me) did not show any concentration-dependent trend and no selective ion suppression. Its decrease with DP observed under usually applied standard conditions (smart mode) is a consequence of discrimination according to m/z and can be overcome by appropriate instrumental settings of Oct 2 DC and TD. IR between 0.971 ± 0.008 and 1.040 ± 0.009 with no trend for DP (2-6) were obtained by averaging all measurements in the range 2 · 10−7 to 2 · 10−5 M total concentration. The DP-related optimized settings were applied to two MCs and compared with the results obtained under so far applied standard conditions. Graphical abstract


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7634
Author(s):  
Edyta Spychał ◽  
Przemysław Czapik

In this article, the effect of cement type on selected properties of plastering mortars containing a cellulose ether admixture was studied. In the research, commercial CEM I Portland cement, CEM II and CEM III, differing in the type and amount of mineral additives, and cement class, were used as binders. Tests of consistency, bulk density, water retention value (WRV), mechanical properties and calorimetric tests were performed. It was proved that the type of cement had no effect on water retention, which is regulated by the cellulose ether. All mortars modified with the admixture were characterized by WRV of about 99%. High water retention is closely related to the action of the cellulose ether admixture. As a result of the research, the possibility of using cement with additives as components of plasters was confirmed. However, attention should be paid to the consistency, mechanical properties of the tested mortars and changes in the pastes during the hydration process. Different effects of additives resulted from increasing or decreasing the consistency of mortars; the flow was in the range from 155 mm to 169 mm. Considering the compressive strength, all plasters can be classified as category III or IV, because the mortars attained the strength required by the standard, of at least 3.5 MPa. The processes of hydration of pastes were carried out with different intensity. In conclusion, the obtained results indicate the possibility of using CEM II and CEM III cements to produce plastering mortars, without changing the effect of water retention.


2021 ◽  
Vol 10 ◽  
pp. 69-83
Author(s):  
Altaf H. Basta ◽  
◽  
Vivian F. Lotfy ◽  
Jehane A. Micky ◽  
Aya M. Salem

The development of liquid crystal materials via nanotechnology has become an interesting subject of research in optical material chemistry. One of the significant nanomaterials is cellulose-based nanoparticles. In this review article, we highlighted the classification of liquid crystal materials (LCs), and types of cellulose-NPs and their characterization as LCs materials. Finally, we present our promising data on the synergistic effect of cellulose-NPs on liquid crystal behavior of ethyl cellulose- and hydroxypropyl cellulose- nanocomposites.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5487
Author(s):  
Edyta Spychał ◽  
Ryszard Dachowski

In this article, the effect of hydrated lime and cellulose ether on the water retention, rheology, and application properties of plasters was studied. For mortars, the consistency, bulk density, and water retention were tested. Rheological measurements of pastes included yield stress and plastic viscosity. In addition to standard tests of mortars and examining the rheological properties of the pastes, a proprietary method for testing the application properties was proposed. The obtained research results made it possible to evaluate the performance of the tested plasters. An attempt was also made to correlate the rheological properties of pastes (plastic viscosity) to the water retention value. The influence of hydrated lime and cellulose ether on selected properties of pastes and plasters was also presented using the statistical Box–Behnken method. The subjective rating of an expert plasterer confirmed the necessity of the modification of plastering mortars with hydrated lime and cellulose ether. As shown, modification of cement plastering mortar with hydrated lime and cellulose ether at the same time allows obtaining a material with favorable technical and technological properties, especially mortars applied by machine.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3569
Author(s):  
Clotilde Capacchione ◽  
Stephan Partschefeld ◽  
Andrea Osburg ◽  
Rocco Gliubizzi ◽  
Carmine Gaeta

This article is focused on the research and development of new cellulose ether derivatives as innovative superplasticizers for mortar systems. Several synthetic strategies have been pursued to obtain new compounds to study their properties on cementitious systems as new bio-based additives. The new water-soluble admixtures were synthesized using a complex carboxymethylcellulose-based backbone that was first hydrolyzed and then sulfo-ethylated in the presence of sodium vinyl sulphonate. Starting with a complex biopolymer that is widely known as a thickening agent was very challenging. Only by varying the hydrolysis times and temperatures of the reactions was achieved the aimed goal. The obtained derivatives showed different molecular weight (Mw) and anionic charges on their backbones. An improvement in shear stress and dynamic viscosity values of CEM II 42.5R cement was observed with the samples obtained with a longer time of higher temperature hydrolysis and sulfo-ethylation. Investigations into the chemical nature of the pore solution, calorimetric studies and adsorption experiments clearly showed the ability of carboxymethyl cellulose superplasticizer (CMC SP) to interact with cement grains and influence hydration processes within a 48-h time window, causing a delay in hydration reactions in the samples. The fluidity of the cementitious matrices was ascertained through slump test and preliminary studies of mechanical and flexural strength of the hardened mortar formulated with the new ecological additives yielded values in terms of mechanical properties. Finally, the computed tomography (CT) images completed the investigation of the pore network structure of hardened specimens, highlighting their promising structure porosity.


2021 ◽  
Vol 560 ◽  
pp. 105-111
Author(s):  
Kenta Teruya ◽  
Ayumi Oguma ◽  
Keita Arai ◽  
Keiko Nishizawa ◽  
Sara Iwabuchi ◽  
...  

2021 ◽  
pp. 102894
Author(s):  
Linglin Xu ◽  
Yangjun Ou ◽  
Andreas Hecker ◽  
Christiane Rößler ◽  
H.M. Ludwig ◽  
...  

Cellulose ◽  
2021 ◽  
Author(s):  
Ken Okahashi ◽  
Miyuki Takeuchi ◽  
Yaxin Zhou ◽  
Yuko Ono ◽  
Shuji Fujisawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document