Triethanolamine-azodiisobutyronitrile mixture as a foaming agent for low-density unsaturated polyester resin manufacturing at a low temperature

2017 ◽  
Vol 134 (18) ◽  
Author(s):  
Gao-Feng Ji ◽  
Xiao-Jun Wang ◽  
Yi-Fan Zhang ◽  
Peng Kong ◽  
Chao Li
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4273
Author(s):  
Jian Zhang ◽  
Xiaojun Wang ◽  
Xinjun Fu

Chopped carbon fiber-reinforced low-density unsaturated polyester resin (CCFR-LDUPR) composite materials with light weight and high mechanical properties were prepared at low temperature and under the synergistic action of methyl ethyl ketone peroxide (MEKP-II) and cobalt naphthenate. Optimal preparation conditions were obtained through an orthogonal experiment, which were preparation temperature at 58.0 °C, 2.00 parts per hundred of resin (phr) of NH4HCO3, 4.00 phr of chopped carbon fibers (CCFs) in a length of 6.0 mm, 1.25 phr of initiator and 0.08 phr of cobalt naphthenate. CCFR-LDUPR composite sample presented its optimal properties for which the density (ρ) was 0.58 ± 0.02 g·cm−3 and the specific compressive strength (Ps) was 53.56 ± 0.83 MPa·g−1·cm3, which is 38.9% higher than that of chopped glass fiber-reinforced low-density unsaturated polyester resin (CGFR-LDUPR) composite materials. Synergistic effects of initiator and accelerator accelerated the specific polymerization of resin in facile preparation at low temperature. Unique “dimples”, “plate microstructure” and “surface defect” fabricated the specific microstructure of the matrix of CCFR-LDUPR composite samples, which was different from that of cured unsaturated polyester resin (UPR) with “body defect” or that of CGFR-LDUPR with coexistence of “surface defect” and “body defect”.


2015 ◽  
Vol 132 (47) ◽  
pp. n/a-n/a ◽  
Author(s):  
Yi-Fan Zhang ◽  
Xiao-Jun Wang ◽  
Zhi-Gang Pan ◽  
Cheng-Ming Hong ◽  
Gao-Feng Ji

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7307
Author(s):  
Xinjun Fu ◽  
Xiaojun Wang ◽  
Jinjian Zhu ◽  
Minzhuang Chen

Long chopped glass fiber reinforced low-density unsaturated polyester resin (LCGFR-LDUPR) composite materials with light weight and excellent mechanical properties were prepared. It was proved that long chopped glass fiber, which was in length of 15.0 mm and chopped from ER4800-T718 plied yarn, was suitable for the preparation of LCGFR-LDUPR composite samples. With the coexistence of 1.50 parts per hundred of resin (phr) of methyl ethyl ketone peroxide (MEKP-II) and 0.05 phr of cobalt naphthenate, optimal preparation parameters were obtained, which were 20.00 phr of long chopped glass fiber, 2.50 phr of NH4HCO3, at a curing temperature of 58.0 °C. The lowest dosage of activated radicals produced by MEKP-II and cobalt naphthenate enabled the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin to carry out, resulting in a higher curing degree of resin. It was conducive to the formation, diffusion, and distribution of bubbles in uniform size, and also for the constitution of ideal three-dimensional framework of long glass fibers in the cured sample, which resulted in the LCGFR-LDUPR composite sample presenting the apparent density (ρ) of 0.68 ± 0.02 g/cm3, the compression strength (P) of 35.36 ± 0.38 MPa, and the highest specific compressive strength (Ps) of 52.00 ± 0.74 MPa/g·cm3. The work carried out an ideal three-dimensional framework of long chopped glass fiber in the reinforcement to low-density unsaturated polyester resin composite samples. It also presented the proper initiator/accelerator system of the lower curing exothermic enthalpy and the slowest crosslinking for unsaturated polyester resin.


2017 ◽  
Vol 76 (3) ◽  
pp. 853-859
Author(s):  
Min Niu ◽  
Zhenzeng Wu ◽  
Xinqing Lin ◽  
Zhongqi Liu ◽  
Yongqun Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document