Potential distribution and population trends of the smalltail shark Carcharhinus porosus inferred from species distribution models and historical catch data

2020 ◽  
Vol 30 (5) ◽  
pp. 882-891 ◽  
Author(s):  
Leonardo Manir Feitosa ◽  
Lucas Pereira Martins ◽  
Leandro Augusto Souza Junior ◽  
Rosangela Paula Lessa
Phytotaxa ◽  
2018 ◽  
Vol 348 (4) ◽  
pp. 254 ◽  
Author(s):  
J.-ANTONIO VÁZQUEZ-GARCÍA ◽  
DAVID A. NEILL ◽  
VIACHESLAV SHALISKO ◽  
FRANK ARROYO ◽  
R. EFRÉN MERINO-SANTI

Magnolia mercedesiarum, a new species from the eastern slopes of the Andes in northern Ecuador, is described and illustrated, and a key to Ecuadorian Magnolia (subsect. Talauma) is provided. This species differs from M. vargasiana in having broadly elliptic leaves that have an obtuse base vs. suborbicular and subcordate to cordate, glabrous stipular scars, more numerous lateral veins per side and fewer stamens. It also differs from M. llanganatensis in having leaf blades broadly elliptic vs. elliptic, longer petioles, less numerous lateral leaf veins per side, larger fruits and more numerous petals and carpels. Using MaxEnt species distribution models and IUCN threat criteria, M. mercedesiarum has a potential distribution area of less than 3307 km² and is assessed as Endangered (EN): B1 ab (i, ii, iii). The relevance of systematic vegetation sampling in the discovery of rare species is highlighted.


2010 ◽  
Vol 16 (2) ◽  
pp. 214-228 ◽  
Author(s):  
Francisca Alba-Sánchez ◽  
José A. López-Sáez ◽  
Blas Benito-de Pando ◽  
Juan C. Linares ◽  
Diego Nieto-Lugilde ◽  
...  

Zootaxa ◽  
2010 ◽  
Vol 2426 (1) ◽  
pp. 54 ◽  
Author(s):  
DENNIS RÖDDER ◽  
FRANK WEINSHEIMER ◽  
STEFAN LÖTTERS

Combination of various techniques allows the identification of unique genetic lineages and/or taxa new to science via integrative taxonomy approaches. Next to molecular methods such as DNA ‘barcoding’ and phylogeographic analyses, Species Distribution Models may serve as compliment techniques allowing spatially explicit predictions of a species’ potential distribution even across millennia. They may facilitate the identification of possible recent and historical gene flow pathways. Herein, we highlight advantages of the combination of both molecular and macroecological approaches using the African miniature leaf litter frog Arthroleptis xenodactyloides as example.


2019 ◽  
Vol 20 (8) ◽  
Author(s):  
Angga Yudaputra ◽  
Inggit Puji Astuti ◽  
Wendell P. Cropper

Abstract. Yudaputra A, Pujiastuti I, Cropper Jr. WP. 2019. Comparing six different species distribution models with several subsets of environmental variables: predicting the potential current distribution of zebra Guettarda speciosa in Indonesia. Biodiversitas 20: 2321-2328. There are many algorithms of species distribution modeling that widely used to predict the potential distribution pattern of diverse organisms. Finding the best model in terms of predicting the potential distribution of many species remains a challenge. The objective of this study is to compare six different algorithms for predicting the potential current distribution pattern of Guettarda speciosa (zebra wood). The occurrence records of G. speciosa are derived from herbarium database, Bogor Botanic Gardens’s plant inventory database and direct field surveys through NKRI expedition.  Seven climatic variables and elevation data are extracted from global data. R open-source software is used to run those algorithms and QGIS is used to prepare the spatial data.  The result shows that MAXENT outperforms other predictive models with the highest AUC score 0.89, followed by SVM (0.87), RF (0.86), and GLM (0.82), DOMAIN (0.73), and BIOCLIM (0.62). Based on the AUC score, the four predictive models (MAXENT, SVM, RF, GLM) are categorized into good predictive models, indicating those are quite better to predict the potential current distribution pattern of G. speciosa. Whereas, DOMAIN is fair predictive model and BIOCLIM is poor predictive model. The predictive map derived from four models (MAXENT, SVM, RF, and GLM) shows almost similar appearance in predicting of potential current distribution of G. speciosa. The predictive map of current distribution would be useful to provide information regarding the potential habitat of G. speciosa across the landscape of Indonesia.


2021 ◽  
Vol 13 (8) ◽  
pp. 1495
Author(s):  
Jehyeok Rew ◽  
Yongjang Cho ◽  
Eenjun Hwang

Species distribution models have been used for various purposes, such as conserving species, discovering potential habitats, and obtaining evolutionary insights by predicting species occurrence. Many statistical and machine-learning-based approaches have been proposed to construct effective species distribution models, but with limited success due to spatial biases in presences and imbalanced presence-absences. We propose a novel species distribution model to address these problems based on bootstrap aggregating (bagging) ensembles of deep neural networks (DNNs). We first generate bootstraps considering presence-absence data on spatial balance to alleviate the bias problem. Then we construct DNNs using environmental data from presence and absence locations, and finally combine these into an ensemble model using three voting methods to improve prediction accuracy. Extensive experiments verified the proposed model’s effectiveness for species in South Korea using crowdsourced observations that have spatial biases. The proposed model achieved more accurate and robust prediction results than the current best practice models.


Sign in / Sign up

Export Citation Format

Share Document