genetic lineages
Recently Published Documents





Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 54
Patricia Escalante-Pliego ◽  
Noemí Matías-Ferrer ◽  
Patricia Rosas-Escobar ◽  
Gabriela Lara-Martínez ◽  
Karol Sepúlveda-González ◽  

Given the interest in the conservation of the Mesoamerican scarlet macaw (Ara macao cyanoptera), the Xcaret Park formed an initial reproductive population about 30 years ago, which has progressively grown to a considerable population in captivity. In this work, we focus on the evaluation of the genetic diversity of the captive population, taking two groups into account: its founding (49) and the current breeding individuals (166). The genetic analysis consisted of genotyping six nuclear microsatellite loci that are characterized by their high variability. Tests for all loci revealed a Hardy–Weinberg equilibrium in four loci of the founders and in no loci of the breeding groups. The results showed that the genetic variation in the Xcaret population was relatively high (founders He = 0.715 SE = 0.074, breeding pairs He = 0.763 SE = 0.050), with an average polymorphism of 7.5 (4–10) alleles per locus in founders and 8.3 (4–14) in breeding pairs. No significant differences in the evaluated genetic diversity indexes were found between both groups. This indicates that the genetic variability in Xcaret has been maintained, probably due to the high number of pairs and the reproductive management strategy. Bayesian analysis revealed five different genetic lineages present in different proportions in the founders and in the breeding pairs, but no population structure was observed between founders and breeding individuals. The analyzed captive individuals showed levels of genetic diversity comparable to reported values from Ara macao wild populations. These data indicate that the captive population has maintained a similar genetic diversity as the metapopulation in the Mayan Forest and is an important resource for reintroduction projects, some of which began more than five years ago and are still underway.

2022 ◽  
Hanny Rivera ◽  
Anne Cohen ◽  
Janelle Thompson ◽  
Iliana Baums ◽  
Michael Fox ◽  

Abstract Ocean warming is killing corals, but heat-tolerant populations exist; if protected, they could replenish affected reefs naturally or through restoration. Palau’s Rock Islands experience chronically higher temperatures and extreme heatwaves, yet their diverse coral communities bleach less than those on Palau’s cooler outer reefs. Here, we combined genetic analyses, bleaching histories and growth rates of Porites cf. lobata colonies to identify thermally tolerant genotypes, map their distribution, and investigate potential growth trade-offs. We identified four P cf. lobata genetic lineages. On Palau’s outer reefs, a thermally sensitive lineage dominates. The Rock Islands harbor two lineages with enhanced thermal tolerance and no consistent growth trade-off. One of these lineages also occurs on several outer reefs. This suggests that the Rock Islands provide naturally tolerant larvae to neighboring areas. Finding and protecting such sources of thermally-tolerant corals is key to reef survival under 21st century climate change.

2022 ◽  
Vol 10 (1) ◽  
pp. 147
Vanessa Silva ◽  
Jessica Ribeiro ◽  
Jaqueline Rocha ◽  
Célia M. Manaia ◽  
Adriana Silva ◽  

Hospital wastewaters often carry multidrug-resistant bacteria and priority pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Pathogens and antibiotic resistance genes present in wastewaters may reach the natural environment facilitating their spread. Thus, we aimed to isolate MRSA from wastewater of 3 hospitals located in the north of Portugal and to characterize the isolates regarding the antimicrobial resistance and genetic lineages. A total of 96 wastewater samples were collected over six months. The water was filtered, and the filtration membrane was immersed in BHI broth supplemented with 6.5% of NaCl and incubated. The inoculum was streaked in ORSAB agar plates for MRSA isolation. The isolates susceptibility testing was performed against 14 antimicrobial agents. The presence of resistance and virulence genes was accessed by PCR. Molecular typing was performed in all isolates. From the 96 samples, 28 (29.2%) were MRSA-positive. Most isolates had a multidrug-resistant profile and carried the mecA, blaZ, aac(6′)-Ie-aph(2″)-Ia, aph(3′)-IIIa, ermA, ermB, ermC, tetL, tetM, dfrA dfrG and catpC221 genes. Most of the isolates were ascribed to the immune evasion cluster (IEC) type B. The isolates belonged to ST22-IV, ST8-IV and ST105-II and spa-types t747, t1302, t19963, t6966, t020, t008 and tOur study shows that MRSA can be found over time in hospital wastewater. The wastewater treatment processes can reduce the MRSA load. The great majority of the isolates belonged to ST22 and spa-type t747 which suggests the fitness of these genetic lineages in hospital effluents.

Genetics ◽  
2022 ◽  
Marinela Dukić ◽  
Kirsten Bomblies

Abstract The number and placement of meiotic crossover events during meiosis has important implications for the fidelity of chromosome segregation as well as patterns of inheritance. Despite the functional importance of recombination, recombination landscapes vary widely among and within species, and this can have a strong impact on evolutionary processes. A good knowledge of recombination landscapes is important for model systems in evolutionary and ecological genetics, since it can improve interpretation of genomic patterns of differentiation and genome evolution, and provides an important starting point for understanding the causes and consequences of recombination rate variation. Arabidopsis arenosa is a powerful evolutionary genetic model for studying the molecular basis of adaptation and recombination rate evolution. Here we generate genetic maps for two diploid A. arenosa individuals from distinct genetic lineages where we have prior knowledge that meiotic genes show evidence of selection. We complement the genetic maps with cytological approaches to map and quantify recombination rates, and test the idea that these populations might have distinct patterns of recombination. We explore how recombination differs at the level of populations, individuals, sexes and genomic regions. We show that the positioning of crossovers along a chromosome correlates with their number, presumably a consequence of crossover interference, and discuss how this effect can cause differences in recombination landscape among sexes or species. We identify several instances of female segregation distortion. We found that averaged genome-wide recombination rate is lower and sex differences subtler in A. arenosa than in A. thaliana.

Diversity ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 29
Izabela S. Mendes ◽  
Bruno F. Melo ◽  
Júnio S. Damasceno ◽  
Daniel F. Teixeira ◽  
Daniel C. Carvalho

Hypomasticus copelandii is a Neotropical freshwater fish widely distributed across coastal drainages of southeastern Brazil, a highly impacted region of South America. The interspecific phylogenetic relationships within the genus and the taxonomic status of the species remain uncertain. Using two mitochondrial and one nuclear locus, we performed a phylogenetic, species delimitation, and time-calibrated analyses to test the hypothesis that H. copelandii is a species complex currently delimited by different Atlantic coastal systems. Results indicate that H. copelandii presents two well-delimited genetic lineages: one in the northern drainages of the Jucuruçu, Mucuri and Doce rivers, and the other in the southern region represented by the Paraíba do Sul River Basin. The time-calibrated phylogeny indicated a split between the two genetic lineages at around 2.8 million years ago (Ma), which might be related to headwater capture events during the Plio-Pleistocene. The discovery of a distinct genetic lineage for H. copelandii suggests distinct management plans for the northern and southern drainages. Such hidden diversity within the H. copelandii provides useful information for taxonomy and conservation across a severely impacted region of Brazil.

2021 ◽  
Chao Du ◽  
Bai Mo ◽  
Wujiao Li ◽  
Wencong Liu ◽  
Zongxiu Hu ◽  

Abstract Rhesus monkeyss (Macaca mulatta) are extensively used in the field of medical and psychological research as valuable experimental animals. 15 polymorphic chromosome-specific microsatellite markers were used to analyze the genetic diversity and population structure in two captive individuals. A total of 155 alleles were identified, with the number of alleles per locus ranging from 7 to 15, giving an average number of 10.3 alleles per locus. The mean number of effective alleles (Ne), observed heterozygosity (Ho), expected heterozygosity (He), and the polymorphism information content (PIC) were 5.602, 0.7297, 0.8016, and 0.7716, respectively. The populations HS and XJ shared partial common alleles, however, the remaining in XJ were not detected. Structure analysis indicated that two populations belong to three genetic lineages. AMOVA showed that the genetic variance was 91% among individuals, while it was 9% among populations, respectively. The bottleneck effect analysis revealed that the two captive populations were in accordance with mutation-drift equilibrium. In the comparison of the genetic parameters and structure between the HS and XJ, we speculated that the genetic diversity was higher, which may be attributed to the exchange of germplasm resources and the input of new individuals from wild populations.

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2538
Alba Folgueiras-González ◽  
Robin van den Braak ◽  
Martin Deijs ◽  
Wikke Kuller ◽  
Steven Sietsma ◽  

A commercial pig farm with no history of porcine circovirus 2 (PCV2) or porcine reproductive and respiratory syndrome virus (PRRSV) repeatedly reported a significant reduction in body weight gain and wasting symptoms in approximately 20–30% of the pigs in the period between three and six weeks after weaning. As standard clinical interventions failed to tackle symptomatology, viral metagenomics were used to describe and monitor the enteric virome at birth, 3 weeks, 4 weeks, 6 weeks, and 9 weeks of age. The latter four sampling points were 7 days, 3 weeks, and 6 weeks post weaning, respectively. Fourteen distinct enteric viruses were identified within the herd, which all have previously been linked to enteric diseases. Here we show that wasting is associated with alterations in the enteric virome of the pigs, characterized by: (1) the presence of enterovirus G at 3 weeks of age, followed by a higher prevalence of the virus in wasting pigs at 6 weeks after weaning; (2) rotaviruses at 3 weeks of age; and (3) porcine sapovirus one week after weaning. However, the data do not provide a causal link between specific viral infections and the postweaning clinical problems on the farm. Together, our results offer evidence that disturbances in the enteric virome at the preweaning stage and early after weaning have a determining role in the development of intestinal barrier dysfunctions and nutrient uptake in the postweaning growth phase. Moreover, we show that the enteric viral load sharply increases in the week after weaning in both healthy and wasting pigs. This study is also the first to report the dynamics and co-infection of porcine rotavirus species and porcine astrovirus genetic lineages during the first 9 weeks of the life of domestic pigs.

2021 ◽  
Rohan S Mehta ◽  
Mike Steel ◽  
Noah A Rosenberg

Monophyly is a feature of a set of genetic lineages in which every lineage in the set is more closely related to all other members of the set than it is to any lineage outside the set. Multiple sets of lineages that are separately monophyletic are said to be reciprocally monophyletic, or jointly monophyletic. The prevalence of reciprocal monophyly, or joint monophyly, has been used to evaluate phylogenetic and phylogeographic hypotheses, as well as to delimit species. These applications often make use of a probability of joint monophyly under models of gene lineage evolution. Studies in coalescent theory have computed this joint monophyly probability for small numbers of separate groups in arbitrary species trees, and for arbitrary numbers of separate groups in trivial species trees. Here, generalizing existing results on monophyly probabilities under the multispecies coalescent, we derive the probability of joint monophyly for arbitrary numbers of separate groups in arbitrary species trees. We illustrate how our result collapses to previously examined cases. We also study the effect of tree height, sample size, and number of species on the probability of joint monophyly. The result also enables computation of relatively simple lower and upper bounds on the joint monophyly probability. Our results expand the scope of joint monophyly calculations beyond small numbers of species, subsuming past formulas that have been used in simpler cases.

2021 ◽  
Vol 17 (12) ◽  
pp. e1009675
Sarah A. Robinson ◽  
Matthew I. J. Raybould ◽  
Constantin Schneider ◽  
Wing Ki Wong ◽  
Claire Marks ◽  

Identifying the epitope of an antibody is a key step in understanding its function and its potential as a therapeutic. Sequence-based clonal clustering can identify antibodies with similar epitope complementarity, however, antibodies from markedly different lineages but with similar structures can engage the same epitope. We describe a novel computational method for epitope profiling based on structural modelling and clustering. Using the method, we demonstrate that sequence dissimilar but functionally similar antibodies can be found across the Coronavirus Antibody Database, with high accuracy (92% of antibodies in multiple-occupancy structural clusters bind to consistent domains). Our approach functionally links antibodies with distinct genetic lineages, species origins, and coronavirus specificities. This indicates greater convergence exists in the immune responses to coronaviruses than is suggested by sequence-based approaches. Our results show that applying structural analytics to large class-specific antibody databases will enable high confidence structure-function relationships to be drawn, yielding new opportunities to identify functional convergence hitherto missed by sequence-only analysis.

2021 ◽  
Vol 8 ◽  
Abdelmounim Essabbar ◽  
Souad Kartti ◽  
Tarek Alouane ◽  
Mohammed Hakmi ◽  
Lahcen Belyamani ◽  

Ending COVID-19 pandemic requires a collaborative understanding of SARS-CoV-2 and COVID-19 mechanisms. Yet, the evolving nature of coronaviruses results in a continuous emergence of new variants of the virus. Central to this is the need for a continuous monitoring system able to detect potentially harmful variants of the virus in real-time. In this manuscript, we present the International Database of SARS-CoV-2 Variations (IDbSV), the result of ongoing efforts in curating, analyzing, and sharing comprehensive interpretation of SARS-CoV-2's genetic variations and variants. Through user-friendly interactive data visualizations, we aim to provide a novel surveillance tool to the scientific and public health communities. The database is regularly updated with new records through a 4-step workflow (1—Quality control of curated sequences, 2—Call of variations, 3—Functional annotation, and 4—Metadata association). To the best of our knowledge, IDbSV provides access to the largest repository of SARS-CoV-2 variations and the largest analysis of SARS-CoV-2 genomes with over 60 thousand annotated variations curated from the 1,808,613 genomes alongside their functional annotations, first known appearance, and associated genetic lineages, enabling a robust interpretation tool for SARS-CoV-2 variations to help understanding SARS-CoV-2 dynamics across the world.

Sign in / Sign up

Export Citation Format

Share Document