Elevated salinity and temperature associated with climate change threaten the survival and conservation of desert spring amphipods

Author(s):  
McKenna P.A. Burns ◽  
Michael J. O'Connell ◽  
Paul J. Schaeffer ◽  
David J. Berg
2011 ◽  
Vol 17 (3) ◽  
pp. 201 ◽  
Author(s):  
K M Jenkins ◽  
R T Kingsford ◽  
G P Closs ◽  
B J Wolfenden ◽  
C D Matthaei ◽  
...  

Human-forced climate change significantly threatens the world’s freshwater ecosystems, through projected changes to rainfall, temperature and sea level. We examined the threats and adaptation opportunities to climate change in a diverse selection of rivers and wetlands from Oceania (Australia, New Zealand and Pacific Islands). We found common themes, but also important regional differences. In regulated floodplain rivers in dry regions (i.e. Australia), reduced flooding projected with climate change is a veneer on current losses, but impacts ramp up by 2070. Increasing drought threatens biota as the time between floods extends. Current measures addressing water allocations and dam management can be extended to adapt to climate change, with water buy-back and environmental flows critical. Freshwater wetlands along coastal Oceania are threatened by elevated salinity as sea level rises, potentially mitigated by levee banks. In mountainous regions of New Zealand, the biodiversity of largely pristine glacial and snow melt rivers is threatened by temperature increases, particularly endemic species. Australian snow melt rivers face similar problems, compounding impacts of hydro-electric schemes. Translocation of species and control of invasive species are the main adaptations. Changes to flow regime and rising water temperatures and sea levels are the main threats of climate change on freshwater ecosystems. Besides lowering emissions, reducing impacts of water consumption and protecting or restoring connectivity and refugia are key adaptations for conservation of freshwater ecosystems. Despite these clear imperatives, policy and management has been slow to respond, even in developed regions with significant resources to tackle such complex issues.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Author(s):  
Brian C. O'Neill ◽  
F. Landis MacKellar ◽  
Wolfgang Lutz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document