Finite‐time reliable dissipative control of neutral‐type switched artificial neural networks with non‐linear fault inputs and randomly occurring uncertainties

2019 ◽  
Vol 22 (6) ◽  
pp. 2487-2499 ◽  
Author(s):  
Thangavel Saravanakumar ◽  
Veerappan Jayakannu Nirmala ◽  
Ramachandran Raja ◽  
Jinde Cao ◽  
Guoping Lu
2019 ◽  
Vol 255 ◽  
pp. 06004
Author(s):  
T.M.Y.S Tuan Ya ◽  
Reza Alebrahim ◽  
Nadziim Fitri ◽  
Mahdi Alebrahim

In this study the deflection of a cantilever beam was simulated under the action of uniformly distributed load. The large deflection of the cantilever beam causes the non-linear behavior of beam. The prupose of this study is to predict the deflection of a cantilever beam using Artificial Neural Networks (ANN). The simulation of the deflection was carried out in MATLAB by using 2-D Finite Element Method (FEM) to collect the training data for the ANN. The predicted data was then verified again through a non linear 2-D geometry problem solver, FEM. Loads in different magnitudes were applied and the non-linear behaviour of the beam was then recorded. It was observed that, there is a close agreement between the predicted data from ANN and the results simulated in the FEM.


2017 ◽  
Vol 9 (8) ◽  
pp. 775 ◽  
Author(s):  
Asmau Ahmed ◽  
Olga Duran ◽  
Yahya Zweiri ◽  
Mike Smith

Author(s):  
Senthil Kumar Arumugasamy ◽  
Zainal Ahmad

Process control in the field of chemical engineering has always been a challenging task for the chemical engineers. Hence, the majority of processes found in the chemical industries are non-linear and in these cases the performance of the linear models can be inadequate. Recently a promising alternative modelling technique, artificial neural networks (ANNs), has found numerous applications in representing non-linear functional relationships between variables. A feedforward multi-layered neural network is a highly connected set of elementary non-linear neurons. Model-based control techniques were developed to obtain tighter control. Many model-based control schemes have been proposed to incorporate a process model into a control system. Among them, model predictive control (MPC) is the most common scheme. MPC is a general and mathematically feasible scheme to integrate our knowledge about a target, process controller design and operation, which allows flexible and efficient exploitation of our understanding of a target, and thus produces optimal performance of a system under various constraints. The need to handle some difficult control problems has led us to use ANN in MPC and has recently attracted a great deal of attention. The efficacy of the neural predictive control with the ability to perform comparably to the non linear neural network strategy in both set point tracking and disturbance rejection proves to have less computation expense for the neural predictive control. The neural network model predictive control (NNMPC) method has less perturbations and oscillations when dealing with noise as compared to the PI controllers.


2013 ◽  
Vol 15 (3) ◽  
pp. 1022-1041 ◽  
Author(s):  
R. Maheswaran ◽  
Rakesh Khosa

In this study, a multi-scale non-linear model based on coupling a discrete wavelet transform (DWT) and the second-order Volterra model, i.e. the wavelet Volterra coupled (WVC) model, is applied for daily inflow forecasting at Krishna Agraharam, Krishna River, India. The relative performance of the WVC model was compared with regular artificial neural networks (ANN), wavelet-artificial neural networks (WA-ANN) models and other baseline models such as auto-regressive moving average with exogenous variables (ARMAX) for lead times of 1–5 days. The models were applied for the forecasting of daily streamflow at Krishna Agraharam Station at Krishna River. The WVC performed very well, especially when compared with the WA-ANN model for lead times of 4 and 5 days. The results indicate that the WVC model is a promising alternative to the other traditional models for short-term flow forecasting.


Author(s):  
A A Peligrad ◽  
E Zhou ◽  
D Morton ◽  
L Li

Laser marking of ceramic materials is a multivariable non-linear process. Real-time control of the process requires the understanding of system dynamics and parameter interaction. In this work, direct inverse control (DIC) and non-linear predictive control (NPC) based on artificial neural networks were applied. The output variable considered for the laser clay tile-marking process was melt pool temperature. The input quantities investigated were laser power and traverse speed. The results show that the NPC accomplished a better reference tracking than the DIC. It was also found that the beam velocity and laser power could well be used to counteract disturbances.


Sign in / Sign up

Export Citation Format

Share Document