Salt dependence and ion specificity of the coil-helix transition of furcellaran

Biopolymers ◽  
1991 ◽  
Vol 31 (14) ◽  
pp. 1727-1736 ◽  
Author(s):  
Wei Zhang ◽  
Lennart Piculell ◽  
Svante Nilsson
ChemBioChem ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 517-522 ◽  
Author(s):  
Tatsuya Funai ◽  
Megumi Aotani ◽  
Risa Kiriu ◽  
Junko Nakamura ◽  
Yuki Miyazaki ◽  
...  

2013 ◽  
Vol 724 ◽  
pp. 69-94 ◽  
Author(s):  
Hui Zhao ◽  
Shengjie Zhai

AbstractWe treat the dielectric decrement induced by excess ion polarization as a source of ion specificity and explore its impact on electrokinetics. We employ a modified Poisson–Nernst–Planck (PNP) model accounting for the dielectric decrement. The dielectric decrement is determined by the excess-ion-polarization parameter $\alpha $ and when $\alpha = 0$ the standard PNP model is recovered. Our model shows that ions saturate at large zeta potentials $(\zeta )$. Because of ion saturation, a condensed counterion layer forms adjacent to the charged surface, introducing a new length scale, the thickness of the condensed layer $({l}_{c} )$. For the electro-osmotic mobility, the dielectric decrement weakens the electro-osmotic flow owing to the decrease of the dielectric permittivity. At large $\zeta $, when $\alpha \not = 0$, the electro-osmotic mobility is found to be proportional to $\zeta / 2$, in contrast to $\zeta $ as predicted by the standard PNP model. This is attributed to ion saturation at large $\zeta $. In terms of the electrophoretic mobility ${M}_{e} $, we carry out both an asymptotic analysis in the thin-double-layer limit and solve the full modified PNP model to compute ${M}_{e} $. Our analysis reveals that the impact of the dielectric decrement is intriguing. At small and moderate $\zeta ~({\lt }6kT/ e)$, the dielectric decrement decreases ${M}_{e} $ with increasing $\alpha $. At large $\zeta $, it is known that the surface conduction becomes significant and plays an important role in determining ${M}_{e} $. It is observed that the dielectric decrement effectively reduces the surface conduction. Hence in stark contrast, ${M}_{e} $ increases as $\alpha $ increases. Our predictions of the contrast dependence of the mobility on $\alpha $ at different zeta potentials qualitatively agree with experimental results on the dependence of the mobility among ions and provide a possible explanation for such ion specificity. Finally, the comparisons between the thin-double-layer asymptotic analysis and the full simulations of the modified PNP model suggest that at large $\zeta $ the validity of the thin-double-layer approximation is determined by ${l}_{c} $ rather than the traditional Debye length.


2020 ◽  
Vol 118 (3) ◽  
pp. 542a-543a
Author(s):  
Subhas C. Bera ◽  
Mona Seifert ◽  
Eugeniu Ostrofet ◽  
Monika Spermann ◽  
Flavia Stal Papini ◽  
...  

QRB Discovery ◽  
2020 ◽  
Vol 1 ◽  
Author(s):  
Ricardo Gaspar ◽  
Mikael Lund ◽  
Emma Sparr ◽  
Sara Linse

Abstractα-Synuclein (α-syn) is an intrinsically disordered protein with a highly asymmetric charge distribution, whose aggregation is linked to Parkinson’s disease. The effect of ionic strength was investigated at mildly acidic pH (5.5) in the presence of catalytic surfaces in the form of α-syn seeds or anionic lipid vesicles using thioflavin T fluorescence measurements. Similar trends were observed with both surfaces: increasing ionic strength reduced the rate of α-syn aggregation although the surfaces as well as α-syn have a net negative charge at pH 5.5. This anomalous salt dependence implies that short-range attractive electrostatic interactions are critical for secondary nucleation as well as heterogeneous primary nucleation. Such interactions were confirmed in Monte Carlo simulations of α-syn monomers interacting with surface-grafted C-terminal tails, and found to be weakened in the presence of salt. Thus, nucleation of α-syn aggregation depends critically on an attractive electrostatic component that is screened by salt to the extent that it outweighs the screening of the long-range repulsion between negatively charged monomers and negative surfaces. Interactions between the positively charged N-termini of α-syn monomers on the one hand, and the negatively C-termini of α-syn on fibrils or vesicles surfaces on the other hand, are thus critical for nucleation.


Sign in / Sign up

Export Citation Format

Share Document