scholarly journals Artificial organelles: towards adding or restoring intracellular activity

ChemBioChem ◽  
2021 ◽  
Author(s):  
Roy A.J.F. Oerlemans ◽  
Suzanne B.P.E. Timmermans ◽  
Jan van Hest
2011 ◽  
Vol 1 (2) ◽  
pp. 150-158
Author(s):  
Venkata M. Reddy ◽  
Elena Bogatcheva ◽  
Leo Einck ◽  
Carol A. Nacy

2015 ◽  
Vol 59 (9) ◽  
pp. 5747-5760 ◽  
Author(s):  
Frédéric Peyrusson ◽  
Deborah Butler ◽  
Paul M. Tulkens ◽  
Françoise Van Bambeke

ABSTRACTGSK1322322 is a peptide deformylase inhibitor active againstStaphylococcus aureusstrains resistant to currently marketed antibiotics. Our aim was to assess the activity of GSK1322322 against intracellularS. aureususing anin vitropharmacodynamic model and, in parallel, to examine its cellular pharmacokinetics and intracellular disposition. For intracellular activity analysis, we used an established model of human THP-1 monocytes and tested one fully susceptibleS. aureusstrain (ATCC 25923) and 8 clinical strains with resistance to oxacillin, vancomycin, daptomycin, macrolides, clindamycin, linezolid, or moxifloxacin. Uptake, accumulation, release, and subcellular distribution (cell fractionation) of [14C]GSK1322322 were examined in uninfected murine J774 macrophages and uninfected and infected THP-1 monocytes. GSK1322322 demonstrated a uniform activity against the intracellular forms of allS. aureusstrains tested, disregarding their resistance phenotypes, with a maximal relative efficacy (Emax) of a 0.5 to 1 log10CFU decrease compared to the original inoculum within 24 h and a static concentration (Cs) close to its MIC in broth. Influx and efflux were very fast (<5 min to equilibrium), and accumulation was about 4-fold, with no or a minimal effect of the broad-spectrum eukaryotic efflux transporter inhibitors gemfibrozil and verapamil. GSK1322322 was recovered in the cell-soluble fraction and was dissociated from the main subcellular organelles and from bacteria (in infected cells). The results of this study show that GSK1322322, as a typical novel deformylase inhibitor, may act against intracellular forms ofS. aureus. They also suggest that GSK1322322 has the ability to freely diffuse into and out of eukaryotic cells as well as within subcellular compartments.


2015 ◽  
Vol 59 (4) ◽  
pp. 2029-2036 ◽  
Author(s):  
Florent Valour ◽  
Sophie Trouillet-Assant ◽  
Natacha Riffard ◽  
Jason Tasse ◽  
Sacha Flammier ◽  
...  

ABSTRACTAlthoughStaphylococcus aureuspersistence in osteoblasts, partly as small-colony variants (SCVs), can contribute to bone and joint infection (BJI) relapses, the intracellular activity of antimicrobials is not currently considered in the choice of treatment strategies for BJI. Here, antistaphylococcal antimicrobials were evaluated for their intraosteoblastic activity and their impact on the intracellular emergence of SCVs in anex vivoosteoblast infection model. Osteoblastic MG63 cells were infected for 2 h with HG001S. aureus. After killing the remaining extracellular bacteria with lysostaphin, infected cells were incubated for 24 h with antimicrobials at the intraosseous concentrations reached with standard therapeutic doses. Intracellular bacteria and SCVs were then quantified by plating cell lysates. A bactericidal effect was observed with fosfomycin, linezolid, tigecycline, oxacillin, rifampin, ofloxacin, and clindamycin, with reductions in the intracellular inocula of −2.5, −3.1, −3.9, −4.2, −4.9, −4.9, and −5.2 log10CFU/100,000 cells, respectively (P< 10−4). Conversely, a bacteriostatic effect was observed with ceftaroline and teicoplanin, whereas vancomycin and daptomycin had no significant impact on intracellular bacterial growth. Ofloxacin, daptomycin, and vancomycin significantly limited intracellular SCV emergence. Overall, ofloxacin was the only molecule to combine an excellent intracellular activity while limiting the emergence of SCVs. These data provide a basis for refining the choice of antibiotics to prioritise in the management of BJI, justifying the combination of a fluoroquinolone for its intracellular activity with an anti-biofilm molecule, such as rifampin.


Author(s):  
Julien M. Buyck ◽  
Sandrine Lemaire ◽  
Cristina Seral ◽  
Ahalieyah Anantharajah ◽  
Frédéric Peyrusson ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiao Wang ◽  
Xiumin Wang ◽  
Da Teng ◽  
Ruoyu Mao ◽  
Ya Hao ◽  
...  

Pharmacology ◽  
1967 ◽  
Vol 17 (5) ◽  
pp. 483-488
Author(s):  
A. Faelli ◽  
G. Esposito ◽  
V. Capraro

Sign in / Sign up

Export Citation Format

Share Document