identified neurons
Recently Published Documents


TOTAL DOCUMENTS

403
(FIVE YEARS 13)

H-INDEX

57
(FIVE YEARS 1)

2021 ◽  
Vol 118 (37) ◽  
pp. e2100624118
Author(s):  
Hsuan-Wen Lin ◽  
Chun-Chao Chen ◽  
J. Steven de Belle ◽  
Tim Tully ◽  
Ann-Shyn Chiang

Episodic events are frequently consolidated into labile memory but are not necessarily transferred to persistent long-term memory (LTM). Regulatory mechanisms leading to LTM formation are poorly understood, however, especially at the resolution of identified neurons. Here, we demonstrate enhanced LTM following aversive olfactory conditioning in Drosophila when the transcription factor cyclic AMP response element binding protein A (CREBA) is induced in just two dorsal-anterior-lateral (DAL) neurons. Our experiments show that this process is regulated by protein–gene interactions in DAL neurons: (1) crebA transcription is induced by training and repressed by crebB overexpression, (2) CREBA bidirectionally modulates LTM formation, (3) crebA overexpression enhances training-induced gene transcription, and (4) increasing membrane excitability enhances LTM formation and gene expression. These findings suggest that activity-dependent gene expression in DAL neurons during LTM formation is regulated by CREB proteins.


2021 ◽  
Author(s):  
Jeremy A. Spool ◽  
Matheus Macedo-Lima ◽  
Garrett Scarpa ◽  
Yuichi Morohashi ◽  
Yoko Yazaki-Sugiyama ◽  
...  
Keyword(s):  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Elizabeth Heath-Heckman ◽  
Shinja Yoo ◽  
Christopher Winchell ◽  
Maurizio Pellegrino ◽  
James Angstadt ◽  
...  

Abstract Background While leeches in the genus Hirudo have long been models for neurobiology, the molecular underpinnings of nervous system structure and function in this group remain largely unknown. To begin to bridge this gap, we performed RNASeq on pools of identified neurons of the central nervous system (CNS): sensory T (touch), P (pressure) and N (nociception) neurons; neurosecretory Retzius cells; and ganglia from which these four cell types had been removed. Results Bioinformatic analyses identified 3565 putative genes whose expression differed significantly among the samples. These genes clustered into 9 groups which could be associated with one or more of the identified cell types. We verified predicted expression patterns through in situ hybridization on whole CNS ganglia, and found that orthologous genes were for the most part similarly expressed in a divergent leech genus, suggesting evolutionarily conserved roles for these genes. Transcriptional profiling allowed us to identify candidate phenotype-defining genes from expanded gene families. Thus, we identified one of eight hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as a candidate for mediating the prominent sag current in P neurons, and found that one of five inositol triphosphate receptors (IP3Rs), representing a sub-family of IP3Rs absent from vertebrate genomes, is expressed with high specificity in T cells. We also identified one of two piezo genes, two of ~ 65 deg/enac genes, and one of at least 16 transient receptor potential (trp) genes as prime candidates for involvement in sensory transduction in the three distinct classes of leech mechanosensory neurons. Conclusions Our study defines distinct transcriptional profiles for four different neuronal types within the leech CNS, in addition to providing a second ganglionic transcriptome for the species. From these data we identified five gene families that may facilitate the sensory capabilities of these neurons, thus laying the basis for future work leveraging the strengths of the leech system to investigate the molecular processes underlying and linking mechanosensation, cell type specification, and behavior.


2020 ◽  
Vol 7 ◽  
Author(s):  
Jennifer Chow ◽  
Andrew J. Thompson ◽  
Fahad Iqbal ◽  
Wali Zaidi ◽  
Naweed I. Syed

The incidence of depression among humans is growing worldwide, and so is the use of selective serotonin reuptake inhibitors (SSRIs), such as sertraline hydrochloride. Our fundamental understanding regarding the mechanisms by which these antidepressants function and their off-target synaptic effects remain poorly defined, owing to the complexity of the mammalian brain. As all brain functions rely on proper synaptic connections between neurons, we examined the effect of sertraline on synaptic transmission, short-term potentiation underlying synaptic plasticity and synapse formation using identified neurons from the mollusk Lymnaea stagnalis. Through direct electrophysiological recordings, made from soma-soma paired neurons, we demonstrate that whereas sertraline does not affect short-term potentiation, it reduces the efficacy of synaptic transmission at both established and newly formed cholinergic synapses between identified neurons. Furthermore, Lymnaea neurons cultured in the presence of sertraline exhibited a decreased incidence of synaptogenesis. Our study provides the first direct functional evidence that sertraline exerts non-specific effects—outside of its SSRI role—when examined at the resolution of single pre- and post-synaptic neurons.


2020 ◽  
Vol 206 (6) ◽  
pp. 921-938
Author(s):  
Pedro F. Jacob ◽  
Berthold Hedwig

Abstract Chirping male crickets combine a 30 Hz pulse pattern with a 3 Hz chirp pattern to drive the rhythmic opening-closing movements of the front wings for sound production. Lesion experiments suggest two coupled modular timer-networks located along the chain of abdominal ganglia, a network in A3 and A4 generating the pulse pattern, and a network organized along with ganglia A4–A6 controlling the generation of the chirp rhythm. We analyzed neurons of the timer-networks and their synaptic connections by intracellular recordings and staining. We identified neurons spiking in phase with the chirps and pulses, or that are inhibited during the chirps. Neurons share a similar “gestalt”, regarding the position of the cell body, the dendritic arborizations and the contralateral ascending axon. Activating neurons of the pulse-timer network elicits ongoing motor activity driving the generation of pulses; this activity is not structured in the chirp pattern. Activating neurons of the chirp-timer network excites pulse-timer neurons; it drives the generation of chirps and during the chirps the pulse pattern is produced. Our results support the hypothesis that two modular networks along the abdominal ganglion chain control the cricket calling song, a pattern generating network in the mesothoracic ganglion may not be required.


2020 ◽  
Author(s):  
Elizabeth Heath-Heckman ◽  
Shinja Yoo ◽  
Christopher Winchell ◽  
Maurizio Pellegrino ◽  
James Angstadt ◽  
...  

ABSTRACTWhile leeches in the genus Hirudo have long been models for neurobiology, the molecular underpinnings of nervous system structure and function in this group remain largely unknown. To begin to bridge this gap, we performed RNASeq on pools of identified neurons of the central nervous system (CNS): sensory T (touch), P (pressure) and N (nociception) neurons; neurosecretory Retzius cells; and ganglia from which these four cell types had been removed. Bioinformatic analyses identified 2,812 putative genes whose expression differed significantly among the samples. These genes clustered into 7 groups which could be associated with one or more of the identified cell types. We verified predicted expression patterns through in situ hybridization on whole CNS ganglia, and found that orthologous genes were for the most part similarly expressed in a divergent leech genus, suggesting evolutionarily conserved roles for these genes. Transcriptional profiling allowed us to identify candidate phenotype-defining genes from expanded gene families. Thus, we identified one of eight hyperpolarization-activated cyclic-nucleotide gated (HCN) channels as a candidate for mediating the prominent sag current in P neurons, and found that one of five inositol triphosphate receptors (IP3Rs), representing a sub-family of IP3Rs absent from vertebrate genomes, is expressed with high specificity in T cells. We also identified one of two piezo genes, two of ~65 deg/enac genes, and one of at least 16 transient receptor potential (trp) genes as prime candidates for involvement in sensory transduction in the three distinct classes of leech mechanosensory neurons.


Author(s):  
Geoffrey W. Meissner ◽  
Zachary Dorman ◽  
Aljoscha Nern ◽  
Kaitlyn Forster ◽  
Theresa Gibney ◽  
...  

AbstractPrecise, repeatable genetic access to specific neurons via the GAL4/UAS system and related methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented using light microscopy of full GAL4 expression patterns, which mostly lack the single-cell resolution required for reliable cell type identification. Here we use stochastic GAL4 labeling with the MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are releasing aligned images of 27,000 such adult central nervous systems.An anticipated use of this resource is to bridge the gap between electron microscopy-identified neurons and light microscopy-based intersectional genetic approaches such as the split-GAL4 system. Identifying the individual neurons that make up each GAL4 expression pattern improves the prediction of which GAL4 enhancer fragments best combine via split-GAL4 to target neurons of interest. To this end we have developed the NeuronBridge search tool, which matches these light microscope neuronal images to neurons in the recently published FlyEM hemibrain. This work thus provides a resource and search tool that will significantly enhance both the efficiency and efficacy of split-GAL4 targeting of EM-identified neurons and further advance Drosophila neuroscience.


2019 ◽  
Author(s):  
Joeri B.G. van Wijngaarden ◽  
Susanne S. Babl ◽  
Hiroshi T. Ito

AbstractBorders and edges are salient and behaviourally relevant features for navigating the environment. The brain forms dedicated neural representations of environmental boundaries, which are assumed to serve as a reference for spatial coding. Here we expand this border coding network to include the retrosplenial cortex (RSC) in which we identified neurons that increase their firing near all boundaries of an arena. RSC border cells specifically encode walls, but not objects, and maintain their tuning in the absence of direct sensory detection. Unlike border cells in the medial entorhinal cortex (MEC), RSC border cells are sensitive to the animal’s direction to nearby walls located contralateral to the recorded hemisphere. Pharmacogenetic inactivation of MEC led to a disruption of RSC border coding, but not vice versa, indicating network directionality. Together these data shed light on how information about distance and direction of boundaries is generated in the brain for guiding navigation behaviour.


Sign in / Sign up

Export Citation Format

Share Document