3D Analysis of Heat Transfer Intensification by Re-Entrance Flow Pin-Fins Microstructures with a Highly Thermal-Conductive Plate

2011 ◽  
Vol 34 (3) ◽  
pp. 379-390 ◽  
Author(s):  
Q. Wang ◽  
V. Hessel ◽  
E. V. Rebrov ◽  
B. Werner
2011 ◽  
Vol 42 (1) ◽  
pp. 65-81 ◽  
Author(s):  
Gongnan Xie ◽  
Bengt Sunden ◽  
Lieke Wang ◽  
Esa Utriainien
Keyword(s):  
Pin Fins ◽  

2013 ◽  
Vol 34 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Zuzana Brodnianska

Abstract The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.


Author(s):  
Yusuke Motoda ◽  
Kenichiro Takeishi ◽  
Yutaka Oda ◽  
Yoshiaki Miyake
Keyword(s):  

Author(s):  
Michael E. Lyall ◽  
Alan A. Thrift ◽  
Atul Kohli ◽  
Karen A. Thole

The performance of many engineering devices from power electronics to gas turbines is limited by thermal management. Heat transfer augmentation in internal flows is commonly achieved through the use of pin fins, which increase both surface area and turbulence. The present research is focused on internal cooling of turbine airfoils using a single row of circular pin fins that is oriented perpendicular to the flow. Low aspect ratio pin fins were studied whereby the channel height to pin diameter was unity. A number of spanwise spacings were investigated for a Reynolds number range between 5000 to 30,000. Both pressure drop and spatially-resolved heat transfer measurements were taken. The heat transfer measurements were made on the endwall of the pin fin array using infrared thermography and on the pin surface using discrete thermocouples. The results show that the heat transfer augmentation relative to open channel flow is the highest for smallest spanwise spacings and lowest Reynolds numbers. The results also indicate that the pin fin heat transfer is higher than the endwall heat transfer.


2015 ◽  
Author(s):  
Silviu Sprinceana ◽  
Ioan Mihai ◽  
Marius Beniuga ◽  
Cornel Suciu

Sign in / Sign up

Export Citation Format

Share Document