conductive plate
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 18)

H-INDEX

13
(FIVE YEARS 3)

Author(s):  
Hasan Alhaj

A modification of the equal area rule is proposed for approximation conductive surfaces by a grid of wires when solving radiation problems. It was tested in the TALGAT system using the example of a dipole on a conductive plate, with verification in the EMPro system. It is shown that the modification of this rule gives more accurate results compared to the original one.


2021 ◽  
Vol 13 (17) ◽  
pp. 9896
Author(s):  
Mai Li ◽  
Zheyi Meng ◽  
Ruichao Feng ◽  
Kailan Zhu ◽  
Fengfeng Zhao ◽  
...  

AB2O4-type binary-transition metal oxides (BTMOs) of CuCo2O4 and MnCo2O4 were successfully prepared on ordered macroporous electrode plates (OMEP) for supercapacitors. Under the current density of 5 mA cm−2, the CuCo2O4/OMEP electrode achieved a specific capacitance of 1199 F g−1. The asymmetric supercapacitor device prepared using CuCo2O4/OMEP as the positive electrode and carbon-based materials as the negative electrode (CuCo2O4/OMEP//AC) achieved the power density of 14.58 kW kg−1 under the energy density of 11.7 Wh kg−1. After 10,000 GCD cycles, the loss capacitance of CuCo2O4/OMEP//AC is only 7.5% (the retention is 92.5%). The MnCo2O4/OMEP electrode shows the specific and area capacitance of 843 F g−1 and 5.39 F cm−2 at 5 mA cm−2. The MnCo2O4/OMEP-based supercapacitor device (MnCo2O4/OMEP//AC) has a power density of 8.33 kW kg−1 under the energy density of 11.6 Wh kg−1 and the cycle stability was 90.2% after 10,000 cycles. The excellent power density and cycle stability prove that the prepared hybrid supercapacitor fabricated under silicon process has a good prospect as the power buffer device for solar cells.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Jay Patel ◽  
Manmohan Singh

As the world is changing and developing with every passing day, the requirements of power are also increasing. There is a shift in utilizing the electrical energy as much as possible and for this reason, many countries have already made policies for completely ruling out the machines which don’t run on electricity. Apart from electricity, there are other forms of energy that can be used to convert that form into a more desirable form. For example, in a plant where the smoke comes out of the chimneys or in a car, the smoke carries a large amount of thermal energy with it. This energy is nothing but a waste and reduction in the efficiency of the systems. If somehow, this energy could be recovered, the efficiency can be increased. Thermoelectric generators serve for this purpose. Thermos electric generators get the heat and using the principle of heat conduction and p and n type materials, the heat can be directly converted into the electricity. There are many materials available in the market for p and n type but in our case, we chose silicon germanium which is also one of the most commonly used. First of all, a single module of thermoelectric generator will be made using p and n type material, as well as using conductive material and some ceramic substance. Then, the entire assembly will be made and this assembly will be exported to Ansys where custom materials will be added and applied on to the geometry. After performing analysis on full model, a comparative study will be presented in which the effect of material of conductive plate on to the voltage difference will be studied


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 915
Author(s):  
Vahabodin Goodarzi ◽  
Saeed Hayati Jafarbeygi ◽  
Ramezan Ali Taheri ◽  
Mikhail Sheremet ◽  
Mohammad Ghalambaz

Mixing is essential in microdevices. Therefore, increasing the mixing efficiency has a significant influence on these devices. Using conductive obstacles with special geometry can improve the mixing quality of the micromixers. In this paper, a numerical study on the mixing caused by an induced-charge electrokinetic micromixer was carried out using a conductive plate with a curved arc shape instead of a conductive flat plate or other non-conductive obstacles for Newtonian fluids. This study also explored the effect of the different radius curves, span length, the number of curved arc plates in the channel, the pattern of arrangement, concavity direction, and the orientation angle against the flow on the mixing. Furthermore, the efficiency of the T-micromixer against a flow with a low diffusion coefficient was investigated. It should be noted that the considered channel is symmetric regarding to the middle horizontal plane and an addition of flat plate reflects a formation of symmetric flow structures that do not allow to improve the mixture process. While an addition of non-symmetric curved arc plates al-lows to increase the mixing by creating vortices. These vortices were created owing to the non-uniform distribution of induced zeta potential on the curved arc plate. A rise in the span length of the curved arc plate when the radius was constant improved the mixing. When three arc plates in one concavity direction were used, the mixing efficiency was 91.86%, and with a change in the concavity direction, the mixing efficiency increased to 95.44%. With a change in the orientation angle from 0 to 25, the mixing efficiency increased by 19.2%.


Membranes ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 281
Author(s):  
Shuo Cong ◽  
Qingxiu Miao ◽  
Fei Guo

It has been proposed that the air-cooled configuration for air gap membrane distillation is an effective way to simplify the system design and energy source requirement. This offers potential for the practical applications of membrane distillation on an industrial scale. In this work, membrane distillation tests were performed using a typical water-cooled membrane distillation (WCMD) configuration and an air-cooled membrane distillation (ACMD) configuration with various condensing plates and operating conditions. To increase the permeate flux of an ACMD system, the condensing plate in the permeate side should transfer heat to the atmosphere more effectively, such as using a more thermally conductive plate, adding fins, or introducing forced convection air flow. Importantly, a practical mass transfer model was proposed to describe the ACMD performance in terms of permeate flux. This model can be simplified by introducing specific correction values to the mass transfer coefficient of a WCMD process under the same conditions. The two factors relate to the capacity (B) and the efficiency (σ), which can be considered as the characteristic factors of a membrane distillation (MD) system. The experimental results are consistent with the theoretical estimations based on this model, which can be used to describe the performance of an MD process.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4240
Author(s):  
Aam Muharam ◽  
Suziana Ahmad ◽  
Reiji Hattori

This paper introduces scaling-factor and design guidelines for shielded-capacitive power transfer (shielded-CPT) systems, offering a simplified design process, coupling-structure optimization, and consideration of safety. A novel scaling-factor-analysis method is proposed by determining the configuration of the coupling structure that improves system safety and increases operating efficiency while minimizing the gap between the shield and the coupler plate. The inductor-series resistance is also analyzed to study the loss efficiency in the shielded-CPT system. The relationship among the shield-coupler gap, distance between the couplers, conductive-plate size, and delivered power is examined and presented. The proposed method is validated by implementing the shielded-CPT system with hardware and the result suggests that the proposed method can be used to design shielded-CPT systems with scaling-factor and safety considerations.


Sign in / Sign up

Export Citation Format

Share Document