scholarly journals Cover Picture: Gutmann Donor and Acceptor Numbers for Ionic Liquids (Chem. Eur. J. 35/2012)

2012 ◽  
Vol 18 (35) ◽  
pp. 10765-10765 ◽  
Author(s):  
Matthias Schmeisser ◽  
Peter Illner ◽  
Ralph Puchta ◽  
Achim Zahl ◽  
Rudi van Eldik
2012 ◽  
Vol 18 (35) ◽  
pp. 10969-10982 ◽  
Author(s):  
Matthias Schmeisser ◽  
Peter Illner ◽  
Ralph Puchta ◽  
Achim Zahl ◽  
Rudi van Eldik

2013 ◽  
Vol 19 (49) ◽  
pp. 16835-16836 ◽  
Author(s):  
Matthias Schmeisser ◽  
Peter Illner ◽  
Ralph Puchta ◽  
Achim Zahl ◽  
Rudi van Eldik

Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 498
Author(s):  
Xiaoying Pang ◽  
Ying Liu ◽  
Juanfang Wang

The acceptor properties of mixed chlorometallate ionic liquids for isobutane-butene alkylation (C4 alkylation) reaction were studied. These ionic liquids were prepared by mixing metal chlorides with either triethylamine hydrochloride or 1-butyl-3-methylimidazolium chloride in various molar ratios. Using triethylphosphine oxide as a probe, Gutmann Acceptor Numbers (AN) of the catalysts were determined, and the Lewis acidity of mixed chlorometallate ionic liquids was quantitatively measured. Additionally, AN value was developed to determine the relationship between Lewis acidity and catalytic selectivity. The favorite AN value for the C4 alkylation reaction should be around 93.0. The [(C2H5)3NH]Cl–AlCl3−CuCl appears to be more Lewis acidity than that of [(C2H5)3NH]Cl–AlCl3. The correlation of the acceptor numbers to speciation of the mixed chlorometallate ionic liquids has also been investigated. [AlCl4]−, [Al2Cl7]−, and [MAlCl5]− (M = Cu, Ag) are the main anionic species of the mixed chlorometallate ILs. While the presence of [(C2H5)3N·M]+ cation always decreases the acidity of the [(C2H5)3NH]Cl−AlCl3−MCl ionic liquids.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Emmanuel A. Bisong ◽  
Hitler Louis ◽  
Tomsmith O. Unimuke ◽  
Victoria M. Bassey ◽  
John A. Agwupuye ◽  
...  

Abstract This research work focuses on the reactivity, stability, and electronic interaction of pyridinium hydrogen nitrate (PHN)-based ionic liquids and the influence of methyl substituent on this class of ionic liquids: Ortho- (O-MPHN), meta- (M-MPHN), and para- (P-MPHN) substitution. Natural bond orbital (NBO) calculations were performed at the density functional theory (DFT) with Becke’s Lee Yang and Parr functional (B3LYP) methods and DFT/B3LYP/6-311++G(d,p) as basis set using GAUSSIAN 09W and GAUSSVIEW 6.0 software and the most important interaction between donor (Filled Lewis-type NBO’s) and the acceptor (vacant non-Lewis NBOs) were observed. From our natural bond orbital (NBO) result, it could be deduced that the higher the stabilization energy value, the greater the interaction between the donor and acceptor NBOs. The stability of the studied compounds is said to follow the order from O-MPHN > PHN > P-MPHN > M-MPHN based on the hyperconjugative interaction (stabilization energy) of the most significant interaction. The result of the highest occupied molecular orbital (HOMO), shows that PHN has the highest HOMO while the substituted derivatives have similar HOMO values between −7.70 and −7.98 eV thus PHN complex is the best electron donor while the substituted derivatives act as electron acceptors due to the presence of methyl group substituent which is observed to be electron deficient as a result of its withdrawal effect from the aromatic ring. Furthermore, the electron density, real space functions such as energy density and Laplacian of electron density at bond critical point (BCP) of the hydrogen bond interaction of the studied compounds were analyzed using Multifunctional Wavefunction analyzer software version 3.7 and it was observed that the hydrogen at position 6 and oxygen at position 11 (H6–O11) of M-methyl pyridinium nitrate with bond distance of 4.59 (Å) gave binding energy with the strongest electrostatic interaction between the cation and anion of the compounds under investigation. We also observed from our results that, substitution at the ortho position enhances the stability and strengthen the extent of charge transfer. This therefore implies that substitution at ortho position is more favorable for inter- and intramolecular interactions resulting to stabilization of the studied molecules.


2014 ◽  
Vol 43 (42) ◽  
pp. 15675-15692 ◽  
Author(s):  
Matthias Schmeisser ◽  
Rudi van Eldik

Solvent donor and acceptor properties play an important role in the elucidation of inorganic reaction mechanisms studied in ionic liquids.


Sign in / Sign up

Export Citation Format

Share Document