Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide

2017 ◽  
Vol 23 (26) ◽  
pp. 6432-6440 ◽  
Author(s):  
Ondřej Jankovský ◽  
Michal Nováček ◽  
Jan Luxa ◽  
David Sedmidubský ◽  
Marie Boháčová ◽  
...  
2000 ◽  
Vol 663 ◽  
Author(s):  
P.P. Poluektov ◽  
L.P. Soukhanov ◽  
M.I. Zhicharev

ABSTRACTA method is suggested to assess the tolerable salt content of the evaporator bottoms from the data on solubility in salt systems taken as simplified models of liquid radioactive waste (LRW) arising from nuclear power plants (NPP) with boiling reactors. It has been demonstrated that the degree of evaporation may be substantially increased by implementing the process in nitric acid. Equations have been derived that allow the calculation of the minimum needed acidity of the solution to allow maximum evaporation.


2018 ◽  
Author(s):  
Alessandro Franchin ◽  
Dorothy L. Fibiger ◽  
Lexie Goldberger ◽  
Erin E. McDuffie ◽  
Alexander Moravek ◽  
...  

Abstract. Airborne and ground-based measurements of aerosol concentrations, chemical composition and gas phase precursors were obtained in three valleys in northern Utah (U.S.A.). The measurements were part of the Utah Winter Fine Particulate Study (UWFPS) that took place in January–February, 2017. Total aerosol mass concentrations of PM1 were measured from a Twin Otter aircraft, with an Aerosol Mass Spectrometer (AMS). PM1 concentrations ranged from less than 2 μg m−3 during clean periods to over 100 μg m−3 during the most polluted episodes, consistent with PM2.5 total mass concentrations measured concurrently at ground sites. Across the entire region, increases in total aerosol mass above ~ 2 μg m−3 were associated with increases in the ammonium nitrate mass fraction, clearly indicating that the highest aerosol mass loadings in the region were predominantly attributable to an increase in ammonium nitrate. The chemical composition was regionally homogenous for total aerosol mass concentrations above 17.5 μg m−3, with 74 ± 5 % (average ± standard deviation) ammonium nitrate, 18 ± 3 % organic material, 6 ± 3 % ammonium sulfate, and 2 ± 2 % ammonium chloride. Vertical profiles of aerosol mass and volume in the region showed variable concentrations with height in the polluted boundary layer. Higher average mass concentrations were observed within the first few hundred meters above ground level in all three valleys during pollution episodes. Gas phase measurements of nitric acid (HNO3) and ammonia (NH3) during the pollution episodes revealed that in Cache and Utah Valley, partitioning of inorganic semi-volatiles to the aerosol phase was usually limited by the amount of gas phase nitric acid, with NH3 being in excess. The inorganic species were compared with the ISORROPIA thermodynamic model. Total inorganic aerosol mass concentrations were calculated for various decreases of total nitrate and total ammonium. For pollution episodes, our simulations of a 50 % decrease in total nitrate lead to a 46 ± 3 % decrease in total PM1 mass. A simulated 50 % decrease in total ammonium lead to a 36 ± 17% µg m−3 in total PM1 mass, over the entire area of the study. Despite some differences among different locations, our results also showed a higher sensitivity to decreasing nitric acid concentrations and the importance of ammonia at the lowest total nitrate conditions. In the Salt Lake Valley, both HNO3 and NH3 concentrations controlled aerosol formation.


2018 ◽  
Vol 18 (23) ◽  
pp. 17259-17276 ◽  
Author(s):  
Alessandro Franchin ◽  
Dorothy L. Fibiger ◽  
Lexie Goldberger ◽  
Erin E. McDuffie ◽  
Alexander Moravek ◽  
...  

Abstract. Airborne and ground-based measurements of aerosol concentrations, chemical composition, and gas-phase precursors were obtained in three valleys in northern Utah (USA). The measurements were part of the Utah Winter Fine Particulate Study (UWFPS) that took place in January–February 2017. Total aerosol mass concentrations of PM1 were measured from a Twin Otter aircraft, with an aerosol mass spectrometer (AMS). PM1 concentrations ranged from less than 2 µg m−3 during clean periods to over 100 µg m−3 during the most polluted episodes, consistent with PM2.5 total mass concentrations measured concurrently at ground sites. Across the entire region, increases in total aerosol mass above ∼2 µg m−3 were associated with increases in the ammonium nitrate mass fraction, clearly indicating that the highest aerosol mass loadings in the region were predominantly attributable to an increase in ammonium nitrate. The chemical composition was regionally homogenous for total aerosol mass concentrations above 17.5 µg m−3, with 74±5 % (average ± standard deviation) ammonium nitrate, 18±3 % organic material, 6±3 % ammonium sulfate, and 2±2 % ammonium chloride. Vertical profiles of aerosol mass and volume in the region showed variable concentrations with height in the polluted boundary layer. Higher average mass concentrations were observed within the first few hundred meters above ground level in all three valleys during pollution episodes. Gas-phase measurements of nitric acid (HNO3) and ammonia (NH3) during the pollution episodes revealed that in the Cache and Utah valleys, partitioning of inorganic semi-volatiles to the aerosol phase was usually limited by the amount of gas-phase nitric acid, with NH3 being in excess. The inorganic species were compared with the ISORROPIA thermodynamic model. Total inorganic aerosol mass concentrations were calculated for various decreases in total nitrate and total ammonium. For pollution episodes, our simulations of a 50 % decrease in total nitrate lead to a 46±3 % decrease in total PM1 mass. A simulated 50 % decrease in total ammonium leads to a 36±17 % µg m−3 decrease in total PM1 mass, over the entire area of the study. Despite some differences among locations, our results showed a higher sensitivity to decreasing nitric acid concentrations and the importance of ammonia at the lowest total nitrate conditions. In the Salt Lake Valley, both HNO3 and NH3 concentrations controlled aerosol formation.


2014 ◽  
Vol 32 (3) ◽  
pp. 307-314 ◽  
Author(s):  
Mateusz Ciszewski ◽  
Andrzej Mianowski

AbstractCapacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte.It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.


1891 ◽  
Vol 49 (296-301) ◽  
pp. 481-488

The author is not aware that any previous experiments have hitherto been made showing the relative passivity of the various kinds of steel compared with wrought iron, or the influence of the chemical composition and physical structure of such metals on their passive condition in nitric acid.


NANO ◽  
2019 ◽  
Vol 14 (02) ◽  
pp. 1950018
Author(s):  
Yue Zhang ◽  
Xuan J. Wang

Nitro-oxidizers (nitric acid-27S, nitrogen tetroxide and mixed nitrogen oxide) are common liquid oxidants widely used in liquid rockets and missile weapons. How to deal with large quantities of scrapped nitro-oxidizers is a complex, costly and dangerous project. We pretreated it with hydrogen peroxide (H2O[Formula: see text] and converted the active oxidant component of nitro-oxidizers into nitric acid, which can be used as oxidant source to prepare graphite oxide from natural graphite. The comprehensive oxidation ability of the reaction system can be effectively controlled by adding different volumes of H2O2, and the oxidation ability can be expressed by the redox potential of the system. Combined with FT-IR, Raman and XRD characterization analysis, the optimal redox potential interval, [1700, 1800][Formula: see text]mV, has been determined for the synthesis of graphite oxide. With the help of data interpolation and function nonlinear fitting and the initial potential of rejected nitro-oxidants obtained, the composition ratio of nitric acid and nitrogen tetroxide (N2O[Formula: see text] has been preliminarily determined with the optimum amount of H2O2. Furthermore, the optimum oxidizing atmosphere for the synthesis of graphite oxide can be formed in spite of a wide range of concentrations of oxidant components, and the resulting graphite oxide has been proven to be a qualified and effective product.


Sign in / Sign up

Export Citation Format

Share Document