ChemInform Abstract: ANODIC CHLORINATION OF AROMATIC COMPOUNDS IN ACETIC ACID

1974 ◽  
Vol 5 (51) ◽  
pp. no-no
Author(s):  
M. MASTRAGOSTINO ◽  
G. CASALBORE ◽  
S. VALCHER
1973 ◽  
Vol 28 (11-12) ◽  
pp. 662-674 ◽  
Author(s):  
Günther Schulz ◽  
Erich Hecker

Abstract The preparation of substituted cis,cis-muconic acids by oxidative ring scission of simple o-di-phenols with peracetic acid is investigated. Scission of pyrocatechol (1) to cis,cis-muconic acid (2) gives optimal yields, if acetic acid or ethyl acetate is used as solvent and if the solution is 15-20% with respect to sulfuric acid free peracetic acid comprising a one molar excess of oxidant. Under similar conditions, 3-tosylamino-pyrocatechol yields with peracetic acid the hitherto unknown α-tosylamino-cis,cis-muconic caid (18). 18 may be converted to α-tosylamino-traras,trans-muconic acid (19) by means of iodine, UV light or heating. From protocatechuic acid (4) under similar conditions not β-carboxy-cis,cis-muconic acid (5) is obtained, but rather β-carboxy-mucono-lactone (6 b, γ-carboxymethyl-β-carboxy-Δα-butenolide). As yet, this lactone has been accessible only from an isomer of β-carboxy-cis,cis-muconic acid, the latter being obtainable by enzymatic scission of protocatechuic acid (4). Steric effects are responsible for both, the formation of the free cis,cis-muconic acids 2 and 18 from pyrocatechol (1) and α-tosylamino-pyrocatechol, and the formation of the γ-lactone 6 b instead of β -carboxy-cis,cis-muconic acid by scission of protocatechuic acid (4). The time course of the reactions shows that - compared to pyrocatechol (1) - a 3-tosylamino-group enhances the peracetic acid scission, whereas a 4-carboxygroup as in 4 slows it down


2008 ◽  
Vol 58 (5) ◽  
pp. 1071-1077
Author(s):  
Bidhan C. Bag ◽  
Makireddi Sai ◽  
Mahavir P. Kaushik ◽  
Krishnamurthy Sekhar ◽  
Chiranjib Bahttacharya

Coagulation is one of the most important physicochemical treatment steps in industrial wastewater to reduce the suspended and colloidal materials responsible for colour and turbidity of the wastewater. The manufacturing plant of N,N′-Dichloro bis (2,4,6-trichlorophenyl) urea (CC2) produces wastewater containing pyridine, acetic acid and diphenyl urea (DPU). The wastewater also contains lot of suspended solids like CC2 and various poly-aromatic compounds. In our present investigation, our basic aim was to find an effective coagulation process for the pretreatment of wastewater discharged from the CC2 plant. Studies were conducted to find out a suitable and effective coagulant for pretreatment of this wastewater. Various coagulating agents such as alum, ferric chloride, sodium carboxymethyl cellulose (Na-CMC) were used. Alum was found to be the most effective coagulant. Coagulation of the wastewater resulted in the total suspended solids (TSS) removal in the range of 92–94% and chemical oxygen demand (COD) removal in the range of 59 to 65% at a dose of 500 mg L−1 of alum at a pH ≥ 7.0. After coagulation the concentration of pyridine in wastewater was found to be reduced by 10.0% and that of DPU 40–45% with a dosage of 500 mg L−1 alum.


Sign in / Sign up

Export Citation Format

Share Document