ChemInform Abstract: 1,4-DIAZABICYCLO(2.2.2)OCTANE-CATALYZED COUPLING OF ALDEHYDES AND ACTIVATED DOUBLE BONDS. PART 3. A SHORT AND PRACTICAL SYNTHESIS OF MIKANECIC ACID (4-VINYL-1-CYCLOHEXENE-1,4-DICARBOXYLIC ACID)

1984 ◽  
Vol 15 (22) ◽  
Author(s):  
H. M. R. HOFFMANN ◽  
J. RABE
1994 ◽  
Vol 59 (22) ◽  
pp. 6683-6686 ◽  
Author(s):  
Michael A. McGuire ◽  
Edmund Sorenson ◽  
Franklin W. Owings ◽  
Theodore M. Resnick ◽  
Margaret Fox ◽  
...  

Heterocycles ◽  
2005 ◽  
Vol 65 (5) ◽  
pp. 1139 ◽  
Author(s):  
Yoshimitsu Nagao ◽  
Tinh Van Dang ◽  
Motoyuki Miyamoto ◽  
Shigeki Sano ◽  
Motoo Shiro

Author(s):  
James F. Hainfeld

Lipids are an important class of molecules, being found in membranes, HDL, LDL, and other natural structures, serving essential roles in structure and with varied functions such as compartmentalization and transport. Synthetic liposomes are also widely used as delivery and release vehicles for drugs, cosmetics, and other chemicals; soap is made from lipids. Lipids may form bilayer or multilammellar vesicles, micelles, sheets, tubes, and other structures. Lipid molecules may be linked to proteins, carbohydrates, or other moieties. EM study of this essential ingredient of life has lagged, due to lack of direct methods to visualize lipids without extensive alteration. OsO4 reacts with double bonds in membrane phospholipids, forming crossbridges. This has been the method of choice to both fix and stain membranes, thus far. An earlier work described the use of tungstate clusters (W11) attached to lipid moieties to form lipid structures and lipid probes.


2011 ◽  
Author(s):  
J. G. de Vries ◽  
K. Muñiz ◽  
G. Franciò ◽  
W. Leitner ◽  
P. L. Alsters ◽  
...  

2017 ◽  
Vol 68 (1) ◽  
pp. 180-185
Author(s):  
Adriana Maria Andreica ◽  
Lucia Gansca ◽  
Irina Ciotlaus ◽  
Ioan Oprean

Were developed new and practical synthesis of (Z)-7-dodecene-1-yl acetate and (E)-9-dodecene-1-yl acetate. The routes involve, as the key step, the use of the mercury derivative of the terminal-alkyne w-functionalised as intermediate. The synthesis of (Z)-7-dodecene-1-yl acetate was based on a C6+C2=C8 and C8+C4=C12 coupling scheme, starting from 1,6-hexane-diol. The first coupling reaction took place between 1-tert-butoxy-6-bromo-hexane and lithium acetylide-ethylendiamine complex obtaining 1-tert-butoxy-oct-7-yne, which is transformed in di[tert-butoxy-oct-7-yne]mercury. The mercury derivative was directly lithiated and then alkylated with 1-bromobutane obtaining 1-tert-butoxy-dodec-7-yne. After acetylation and reduction with lithium aluminium hydride of 7-dodecyne-1-yl acetate gave (Z)-7-dodecene-1-yl acetate with 96 % purity. The synthesis of (E)-9-dodecene-1-yl acetate was based on a C8+C2=C10 and C10+C2=C12 coupling scheme, starting from 1,8-octane-diol. The first coupling reaction took place between 1-tert-butoxy-8-bromo-octane and lithium acetylide-ethylendiamine complex obtaining 1-tert-butoxy-dec-9-yne, which is transformed in di[tert-butoxy-dec-9-yne]mercury. The mercury derivative was directly lithiated and then alkylated with 1-bromoethane obtaining 1-tert-butoxy-dodec-9-yne. After reduction with lithium aluminium hydride of 1-tert-butoxy-(E)-9-dodecene and acetylation was obtained (E)-9-dodecene-1-yl acetate with 97 % purity.


Sign in / Sign up

Export Citation Format

Share Document