Gold liposomes

Author(s):  
James F. Hainfeld

Lipids are an important class of molecules, being found in membranes, HDL, LDL, and other natural structures, serving essential roles in structure and with varied functions such as compartmentalization and transport. Synthetic liposomes are also widely used as delivery and release vehicles for drugs, cosmetics, and other chemicals; soap is made from lipids. Lipids may form bilayer or multilammellar vesicles, micelles, sheets, tubes, and other structures. Lipid molecules may be linked to proteins, carbohydrates, or other moieties. EM study of this essential ingredient of life has lagged, due to lack of direct methods to visualize lipids without extensive alteration. OsO4 reacts with double bonds in membrane phospholipids, forming crossbridges. This has been the method of choice to both fix and stain membranes, thus far. An earlier work described the use of tungstate clusters (W11) attached to lipid moieties to form lipid structures and lipid probes.

1988 ◽  
Vol 8 (4) ◽  
pp. 299-307 ◽  
Author(s):  
A. M. Batenburg ◽  
B. de Kruijff

Recent reports on the interaction of cardiotoxin and melittin with phospholipid model membranes are reviewed and analyzed. These types of peptide toxins are able to modulate lipid surface curvature and polymorphism in a highly lipid-specific way. It is demonstrated that the remarkable variety of effects of melittin on the organization of different membrane phospholipids can be understood in a relatively simple model, based on the shape-structure concept of lipid polymorphism and taking into account the position of the peptide molecule with respect to the lipids. Based on the strong preference of the peptides for negatively charged lipids and the structural consequences thereof, and on preliminary studies of signal peptide-lipid interaction, a role of inverted or concave lipid structures in the process of protein translocation across membranes is suggested.


Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


1989 ◽  
Vol 62 (04) ◽  
pp. 1116-1120 ◽  
Author(s):  
N Chetty ◽  
J D Vickers ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
J F Mustard

SummaryEicosapentaenoic acid (EPA) inhibits platelet responsiveness to aggregating agents. To investigate the reactions that are affected by EPA, we examined the effect of preincubating aspirintreated rabbit platelets with EPA on stimulation of inositol phosphate formation in response to the TXA2 analogue U46619. Stimulation of platelets with U46619 (0.5 μM) caused aggregation and slight release of dense granule contents; aggregation and release were inhibited by preincubation of the platelets with EPA (50 μM) for 1 h followed by washing to remove unincorporated EPA. Incubation with EPA (50 μM) for 1 h did not cause a detectable increase in the amount of EPA in the platelet phospholipids. When platelets were prelabelled with [3H]inositol stimulation with U46619 of control platelets that had not been incubated with EPA significantly increased the labelling of mos1tol phosphates. The increases in inositol phosphate labelling due to U46619 at 10 and 60 s were partially inhibited by premcubat10n of the platelets with 50 μM EPA. Since the activity of cyclo-oxygenase was blocked with aspirin, inhibition of inositol phosphate labelling in response to U46619 indicates either that there may be inhibition of signal transduction without a detectable change in the amount of EPA in platelet phospholipids, that changes in signal transduction require only minute changes in the fatty acid composition of membrane phospholipids, or that after a 1 h incubation with EPA, activation of phospholipase C is affected by a mechanism that is not directly related to incorporation of EPA.


2011 ◽  
Author(s):  
J. G. de Vries ◽  
K. Muñiz ◽  
G. Franciò ◽  
W. Leitner ◽  
P. L. Alsters ◽  
...  

Author(s):  
Fan Hai-fu ◽  
Hao Quan ◽  
M. M. Woolfson

AbstractConventional direct methods, which work so well for small structures, are less successful for macromolecules. Where it has been demonstrated that a solution might be found using direct methods it is then found that the usual figures of merit are unable to distinguish the few good sets of phases from the large number of sets generated. The reasons for the difficulties with very large structures are considered from a first-principles approach taking into account both the factors of having a large number of atoms and low resolution data. A proposal is made for trying to recognize good phase sets by taking a large structure as a sum of a number of smaller structures for each of which a conventional figure of merit can be applied.


Author(s):  
Robert Boyd

Human beings have evolved to become the most dominant species on Earth. This astonishing transformation is usually explained in terms of cognitive ability—people are just smarter than all the rest. But this book argues that culture—our ability to learn from each other—has been the essential ingredient of our remarkable success. The book shows how a unique combination of cultural adaptation and large-scale cooperation has transformed our species and assured our survival—making us the different kind of animal we are today. The book is based on the Tanner Lectures delivered at Princeton University, featuring challenging responses across the chapters.


1989 ◽  
Vol 2 (2) ◽  
pp. 13-18
Author(s):  
Alvino E. Fantini

Languages are more than mere tools. They are, in fact, paradigms of a view of the world. Knowledge of more than one language holds promise for an expanded worldview, for understanding other people on their own terms, Viewed this way, bilingualism becomes an essential ingredient in the formation of interculturally minded individuals.


Sign in / Sign up

Export Citation Format

Share Document