lipid structures
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 20)

H-INDEX

25
(FIVE YEARS 2)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Bruna Carvalho ◽  
Bruno Ceccato ◽  
Mariano Michelon ◽  
Sang Han ◽  
Lucimara de la Torre

Microfluidics is an emerging technology that can be employed as a powerful tool for designing lipid nano-microsized structures for biological applications. Those lipid structures can be used as carrying vehicles for a wide range of drugs and genetic materials. Microfluidic technology also allows the design of sustainable processes with less financial demand, while it can be scaled up using parallelization to increase production. From this perspective, this article reviews the recent advances in the synthesis of lipid-based nanostructures through microfluidics (liposomes, lipoplexes, lipid nanoparticles, core-shell nanoparticles, and biomimetic nanovesicles). Besides that, this review describes the recent microfluidic approaches to produce lipid micro-sized structures as giant unilamellar vesicles. New strategies are also described for the controlled release of the lipid payloads using microgels and droplet-based microfluidics. To address the importance of microfluidics for lipid-nanoparticle screening, an overview of how microfluidic systems can be used to mimic the cellular environment is also presented. Future trends and perspectives in designing novel nano and micro scales are also discussed herein.


Soft Matter ◽  
2022 ◽  
Author(s):  
Göran Surmeier ◽  
Michael Paulus ◽  
Eric Schneider ◽  
Susanne Dogan ◽  
Metin Tolan ◽  
...  

Cellular solutes affect the equilibration of cubic lipid structures after pressure-induced phase transitions.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1441
Author(s):  
Claudia Claus ◽  
Robert Fritz ◽  
Erik Schilling ◽  
Uta Reibetanz

Lipid structures, such as liposomes or micelles, are of high interest as an approach to support the transport and delivery of active agents as a drug delivery system. However, there are many open questions regarding their uptake and impact on cellular metabolism. In this study, lipid structures were assembled as a supported lipid bilayer on top of biopolymer-coated microcarriers based on the Layer-by-Layer assembly strategy. The functionalized microcarriers were then applied to various human and animal cell lines in addition to primary human macrophages (MΦ). Here, their influence on cellular metabolism and their intracellular localization were detected by extracellular flux analysis and immunofluorescence analysis, respectively. The impact of microcarriers on metabolic parameters was in most cell types rather low. However, lipid bilayer-supported microcarriers induced a decrease in oxygen consumption rate (OCR, indicative for mitochondrial respiration) and extracellular acidification rate (ECAR, indicative for glycolysis) in Vero cells. Additionally, in Vero cells lipid bilayer microcarriers showed a more pronounced association with microtubule filaments than polymer-coated microcarrier. Furthermore, they localized to a perinuclear region and induced nuclei with some deformations at a higher rate than unfunctionalized carriers. This association was reduced through the application of the microtubule polymerization inhibitor nocodazole. Thus, the effect of respective lipid structures as a drug delivery system on cells has to be considered in the context of the respective target cell, but in general can be regarded as rather low.


2021 ◽  
Author(s):  
Haruki Uchino ◽  
Hiroshi Tsugawa ◽  
Hidenori Takahashi ◽  
Makoto Arita

Abstract Mass spectrometry-based untargeted lipidomics has revealed the lipidome atlas of living organisms at the molecular species level. Despite the double bond (C=C) position being a crucial factor for enzyme preference, cellular membrane milieu, and biological activity, the C=C defined structures have not yet been characterized. Here, we present a novel approach for C=C position-resolved untargeted lipidomics using a combination of oxygen attachment dissociation and computational mass spectrometry to increase the rate of annotation. We validated the accuracy of our platform as per the authentic standards of 21 lipid subclasses and the biogenic standards of 51 molecules containing polyunsaturated fatty acids (PUFAs) from the cultured cells fed with various fatty acid-enriched media. By analyzing human and mice-derived biological samples, we characterized 675 unique lipid structures with the C=C position-resolved level encompassing 22 lipid subclasses defined by LIPID MAPS. Our platform also illuminated the unique profiles of tissue-specific lipids containing n-3 and/or n-6 very long-chain PUFAs (carbon M 28 and double bonds a 4) in the eye, testis, and brain of the mouse.


2021 ◽  
Author(s):  
Moataz Dowaidar

Recent breakthroughs in clinical research and deployment of RNAi therapeutics have validated siRNA's promise to cure human diseases. RNAi therapy has been proven to effectively alter the expression of human-related target genes, including cancer. It has the potential to regulate oncogenes not addressed by standard treatment, such as oncogenic lncRNAs, to treat cancer more successfully. Due to their intrinsic liver affinity, successful RNAi therapies in clinical development primarily target liver diseases. Systemic dispersion of therapeutic siRNAs is an effective cancer therapy technique, especially for advanced diseases. Despite recent advances in siRNA delivery technologies, a problem remains with efficiently distributing siRNAs into solid tumors and cancer cells. To overcome several challenges to the dispersion of siRNA in cancer cells' cytoplasm, novel and highly effective delivery systems need to be devised. Delivery devices' ability to sense and adjust to environmental changes throughout the delivery process can make cytosolic distribution into cancer cells more efficient and accurate. Due to their well-defined and simple chemical structures and their multifunctionalities to respond to environmental changes to facilitate efficient cytosolic transport, environment-responsive lipids are promising platforms for clinical development to deliver siRNA. The primary benefit of simple, well-defined lipid structures over complex systems for cost-effective CMC and clinical translation is the simple, well-defined lipid structures. Environment-responsive lipids might be considered as simple, clever siRNA delivery methods that can overcome delivery difficulties for successful cancer treatment.


2021 ◽  
Author(s):  
Laura Carmona-Salazar ◽  
Rebecca E Cahoon ◽  
Jaime Gasca-Pineda ◽  
Ariadna González-Solís ◽  
Rosario Vera-Estrella ◽  
...  

Abstract Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.


2021 ◽  
Vol 118 (8) ◽  
pp. e2021012118
Author(s):  
Tobias E. Spikes ◽  
Martin G. Montgomery ◽  
John E. Walker

The ATP synthase complexes in mitochondria make the ATP required to sustain life by a rotary mechanism. Their membrane domains are embedded in the inner membranes of the organelle, and they dimerize via interactions between their membrane domains. The dimers form extensive chains along the tips of the cristae with the two rows of monomeric catalytic domains extending into the mitochondrial matrix at an angle to each other. Disruption of the interface between dimers by mutation affects the morphology of the cristae severely. By analysis of particles of purified dimeric bovine ATP synthase by cryo-electron microscopy, we have shown that the angle between the central rotatory axes of the monomeric complexes varies between ca. 76 and 95°. These particles represent active dimeric ATP synthase. Some angular variations arise directly from the catalytic mechanism of the enzyme, and others are independent of catalysis. The monomer–monomer interaction is mediated mainly by j subunits attached to the surface of wedge-shaped protein-lipid structures in the membrane domain of the complex, and the angular variation arises from rotational and translational changes in this interaction, and combinations of both. The structures also suggest how the dimeric ATP synthases might be interacting with each other to form the characteristic rows along the tips of the cristae via other interwedge contacts, molding themselves to the range of oligomeric arrangements observed by tomography of mitochondrial membranes, and at the same time allowing the ATP synthase to operate under the range of physiological conditions that influence the structure of the cristae.


2021 ◽  
Vol 27 ◽  
Author(s):  
Jennifer Cadenas-Fernández ◽  
Pablo Ahumada-Pascual ◽  
Luis Sanz Andreu ◽  
Ana Velasco

: Mammalian nervous systems depend crucially on myelin sheaths covering the axons. In the central nervous system, myelin sheaths consist of lipid structures which are generated from the membrane of oligodendrocytes (OL). These sheaths allow fast nerve transmission, protect axons and provide them metabolic support. In response to specific traumas or pathologies, these lipid structures can be destabilized and generate demyelinating lesions. Multiple sclerosis (MS) is an example of a demyelinating disease in which the myelin sheaths surrounding the nerve fibers of the brain and spinal cord are damaged. MS is the leading cause of neurological disability in young adults in many countries, and its incidence has been increasing in recent decades. Related to its etiology, it is known that MS is an autoimmune and inflammatory CNS disease. However, there are no effective treatments for this disease and the immunomodulatory therapies that currently exist have proven limited success since they only delay the progress of the disease. Nowadays, one of the main goals in the MS research is to find treatments which allows the recovery of neurological disabilities due to demyelination. To this end, different approaches, such as modulating intracellular signaling or regulating the lipid metabolism of OLs, are being considered. Here, in addition to immunosuppressive or immunomodulatory drugs that reduce the immune response against myelin sheaths, we review a diverse group of drugs that promotes endogenous remyelination in MS patients and whose use may be interesting as potential therapeutic agents in MS disease. To this end, we compile specific treatments against MS that are currently in the market with remyelination strategies which have entered into human clinical trials for future reparative MS therapies. The method used in this study is a systematic literature review on PubMed, Web of Science and Science Direct databases up to May 31, 2020. To narrow down the search results in databases, more specific keywords, such as, “myelin sheath”, “remyelination”, “demyelination”, “oligodendrocyte” and “lipid synthesis” were used to focus the search. We favoured papers published after January, 2015, but did not exclude earlier seminal papers.


Author(s):  
Christopher Marble ◽  
Xingqu Xu ◽  
Georgi Petrov ◽  
Dawei Wang ◽  
Vladislav Yakovlev

Hydrogen bonding plays an essential role in biological processes by stabilizing proteins and lipid structures as well as controlling the speed of enzyme catalyzed reactions. Dimethyl sulfoxide-water (DMSO-H2O) solution serves...


Aggregate ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 69-79
Author(s):  
Hongqian Cao ◽  
Yang Yang ◽  
Junbai Li

Sign in / Sign up

Export Citation Format

Share Document