ChemInform Abstract: Synthesis and Antibacterial Activity of Some 1-(2-Propynyl) and 1- Propadienyl Derivatives of 1,4-Dihydro-4-oxoquinoline-3-carboxylic Acids and Similar Heterocycles.

ChemInform ◽  
2010 ◽  
Vol 22 (25) ◽  
pp. no-no
Author(s):  
S. RADL ◽  
L. KOVAROVA ◽  
J. HOLUBEK
1991 ◽  
Vol 56 (2) ◽  
pp. 439-448 ◽  
Author(s):  
Stanislav Rádl ◽  
Lenka Kovářová ◽  
Jiří Holoubek

N-Alkylation of IIIa, IIIb, IIId - IIIf and 9-acridanone with 3-bromopropyne in dimethyl sulfoxide in the presence of potassium carbonate yielded N-(2-propynyl) derivatives IVa - IVe and VIa, respectively. Ethyl esters IVa, IVb, and IVe were hydrolyzed to IVf - IVh, respectively. Compounds IVf, IVg, IVctreated with bases yielded N-propadienyl derivatives Va - Vc. On the other hand 2-substituted compounds IVd and IVh did not change under the same conditions. Compound VIa treated with powdered potassium hydroxide in dimethyl sulfoxide at room temperature yielded N-(1-propynyl) derivative VII.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Negar Ghorbani ◽  
Abdol-Khalegh Bordbar ◽  
Asghar Taheri-Kafrani ◽  
Akbar Vaseghi

2019 ◽  
Vol 16 (6) ◽  
pp. 478-484
Author(s):  
Kenia Barrantes ◽  
Mary Fuentes ◽  
Luz Chacón ◽  
Rosario Achí ◽  
Jorge Granados-Zuñiga ◽  
...  

Two ether and one ester derivatives of the 4-nitro-3-hydroxybenzoic acid were synthesized and characterized. The in vitro antimicrobial and cytotoxic activities of the three novel compounds were also evaluated. The aromatic derivatives showed antibacterial activity against one of the four microorganisms tested and two compounds (C8 and NOBA) had a lower IC50 in HeLa cells.


2012 ◽  
Vol 9 (6) ◽  
pp. 633-637 ◽  
Author(s):  
Tomasz Plech ◽  
Monika Wujec ◽  
Urszula Kosikowska ◽  
Anna Malm ◽  
Magdalena Barylka ◽  
...  

2020 ◽  
Vol 16 (4) ◽  
pp. 481-488
Author(s):  
Heli Sanghvi ◽  
Satyendra Mishra

Background: Curcumin, one of the most important pharmacologically significant natural products, has gained significant consideration among scientists for decades since its multipharmacological activities. 1, 3-Dicarbonyl moiety of curcumin was found to be accountable for the rapid degradation of curcumin molecule. The aim of present work is to replace 1, 3-dicarbonyl moiety of curcumin by pyrazole and phenylpyrazole derivatives with a view to improving its stability and to investigate the role of substitution in N-phenylpyrazole curcumin on its antibacterial activity against both Gram-positive as well as Gram-negative bacteria. Methods: Pyrazole derivatives of curcumin were prepared by heating curcumin with phenyhydrazine/ substituted phenyhydrazine derivatives in AcOH. The residue was purified by silica gel column chromatography. Structures of purified compounds were confirmed by 1H NMR and Mass spectroscopy. The synthesized compounds were evaluated for their antibacterial activity by the microdilution broth susceptibility test method against gram positive (S. aureus) and gram negative (E. coli). Results: Effects of substitution in N-phenylpyrazole curcumin derivatives against S. aureus and E. coli were studied. The most active N-(3-Nitrophenylpyrazole) curcumin (12) exhibits twenty-fold more potency against S. aureus (MIC: 10μg/mL)) and N-(2-Fluoroophenylpyrazole) curcumin (5) fivefold more potency against E. coli (MIC; 50 μg/mL) than N-phenylpyrazole curcumin (4). Whereas, a remarkable decline in anti-bacterial activity against S. aureus and E. coli was observed when electron donating groups were incorporated in N-phenylpyrazole curcumin (4). Comparative studies of synthesized compounds suggest the effects of electron withdrawing and electron donating groups on unsubstituted phenylpyrazole curcumin (4). Conclusion: The structure-activity relationship (SAR) results indicated that the electron withdrawing and electron donating at N-phenylpyrazole curcumin played key roles for their bacterial inhibitory effects. The results of the antibacterial evaluation showed that the synthesized pyrazole derivatives of curcumin displayed moderate to very high activity in S. aureus. In conclusion, the series of novel curcumin derivatives were designed, synthesized and tested for their antibacterial activities against S. aureus and E. coli. Among them, N-(3-Nitrophenylpyrazole curcumin; 12) was most active against S. aureus (Gram-positive) and N-(2-Fluoroophenylpyrazole) curcumin (5) against E. coli (Gram-negative) bacteria.


2021 ◽  
Vol 31 (4) ◽  
pp. 498-500
Author(s):  
Jian Sun ◽  
Lili He ◽  
Yuanyu Gao ◽  
Lijuan Zhai ◽  
Jingwen Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document